Matemática, perguntado por nicolasmsouza41, 6 meses atrás

Equação de segundo grau.

2x² - x - 10 = 0
2x² +3x - 5 = 0

Soluções para a tarefa

Respondido por Skoy
7

Para calcularmos as raízes de uma equação do 2º grau devemos primeiramente identificarmos o A, B e o C da sua equação. Vamos lá.

\large\begin{array}{lr} \sf \underline{2}x^{2}\  \underline{-1}x\ \underline{- 10}=0\left\{\begin{array}{ll}\sf a=2\\\sf b=-1\\\sf c=-10  \end{array}\right.\end{array}

=

=

=

\large\begin{array}{lr} \sf \underline{2}x^{2}\  \underline{+3}x\ \underline{- 5}=0\left\{\begin{array}{ll}\sf a=2\\\sf b=3\\\sf c=-5 \end{array}\right.\end{array}

Agora devemos aplicar a fórmula do discriminante ( \Delta ).

\large\begin{array}{lr} \sf \underline{2}x^{2}\  \underline{-1}x\ \underline{- 10}=0\left\{\begin{array}{ll}\sf a=2\\\sf b=-1\\\sf c=-10  \end{array}\right.\end{array}

\large\begin{array}{lr} \sf \Delta = b^{2} -4\cdot a\cdot c\\\\\sf \Delta = (-1)^{2} -4\cdot 2\cdot (-10)\\\\\sf \Delta = 1 + 80\\\\\sf \Delta = \underline{\boxed{\red{\sf 81}}}\end{array}

=

=

=

\large\begin{array}{lr} \sf \underline{2}x^{2}\  \underline{+3}x\ \underline{- 5}=0\left\{\begin{array}{ll}\sf a=2\\\sf b=3\\\sf c=-5 \end{array}\right.\end{array}      

\large\begin{array}{lr} \sf \Delta = b^{2} -4\cdot a\cdot c\\\\\sf \Delta = 3^{2} -4\cdot 2\cdot (-5)\\\\\sf \Delta = 9 + 40\\\\\sf \Delta = \underline{\boxed{\red{\sf 49}}}\end{array}        

Agora devemos aplicar a fórmula de bhaskara.

\large\begin{array}{lr} \sf \underline{2}x^{2}\  \underline{-1}x\ \underline{- 10}=0\left\{\begin{array}{ll}\sf a=2\\\sf b=-1\\\sf c=-10  \end{array}\right.\end{array}

\large\begin{array}{lr} \sf \Delta = b^{2} -4\cdot a\cdot c\\\\\sf \Delta = (-1)^{2} -4\cdot 2\cdot (-10)\\\\\sf \Delta = 1 + 80\\\\\sf \Delta = \underline{\boxed{\red{\sf 81}}}\end{array}

\large\begin{array}{lr} \sf x=\dfrac{-b\pm \sqrt{\Delta} }{2\cdot a} \\\\\sf x=\dfrac{-(-1)\pm \sqrt{81} }{2\cdot 2}  \\\\\sf x=\dfrac{1\pm 9}{4}\\\\\sf x'=\dfrac{10}{4}\\\\\sf x'= \underline{\boxed{\red{\sf \frac{5}{2}}}}\\\\\sf x''=\dfrac{-8}{4}\\\\\sf x''= \underline{\boxed{\red{\sf -2}}}\end{array}

   

=

=

=

\large\begin{array}{lr} \sf \underline{2}x^{2}\  \underline{+3}x\ \underline{- 5}=0\left\{\begin{array}{ll}\sf a=2\\\sf b=3\\\sf c=-5 \end{array}\right.\end{array}      

\large\begin{array}{lr} \sf \Delta = b^{2} -4\cdot a\cdot c\\\\\sf \Delta = 3^{2} -4\cdot 2\cdot (-5)\\\\\sf \Delta = 9 + 40\\\\\sf \Delta = \underline{\boxed{\red{\sf 49}}}\end{array}        

\large\begin{array}{lr} \sf x=\dfrac{-b\pm \sqrt{\Delta} }{2\cdot a} \\\\\sf x=\dfrac{-3\pm \sqrt{41} }{2\cdot 2}  \\\\\sf x=\dfrac{-3\pm 7}{4}\\\\\sf x'=\dfrac{4}{4}\\\\\sf x'= \underline{\boxed{\red{\sf 1}}}\\\\\sf x''=\dfrac{-10}{4}\\\\\sf x''= \underline{\boxed{\red{\sf -\frac{5}{2}}}}\end{array}

Espero ter ajudado.

Bons estudos.

  • Att. FireClassis.
Anexos:

nicolasmsouza41: Com essa resposta excepcional eu não fiz mais que minha obrigação.
anonimo68618: ótima reposta
anonimo68618: bem explicativa
Respondido por Leticia1618
6

Explicação passo-a-passo:

.

2x {}^{2}  - x - 10 = 0

a = 2

b =  - 1

c =  - 10

∆ = b {}^{2}  - 4ac

∆ = ( - 1) {}^{2}   - 4 \times 2 \times  - 10

∆ = 1 + 80

∆ = 81

 \dfrac{ - b \frac{ + }{}  \sqrt{∆} }{2a}

 \dfrac{1 \frac{ + }{} \sqrt{81}  }{2 \times 2}

 \dfrac{1 \frac{ + }{} 9 }{4}

x {}^{1}  =  \dfrac{1 + 9}{4}  =  \dfrac{10}{4}  =  \dfrac{10 {}^{ \div 2} }{4 {}^{ \div 2} }  =  \dfrac{5}{2}

x {}^{2}  =  \dfrac{1 - 9}{4}  =  -  \dfrac{8}{4}  =  - 2

.

2x {}^{2}  + 3x - 5 = 0

a = 2

b = 3

c =  - 5

∆ = b {}^{2}  - 4ac

∆ =3 {}^{2}  - 4 \times 2 \times  - 5

∆ = 9 + 40

∆ = 49

  \dfrac{ - b \frac{ + }{} \sqrt{∆}  }{2a}

 \dfrac{ - 3 \frac{ + }{} \sqrt{49}  }{2 \times 2}

 \dfrac{ - 3 \frac{ + }{} 7}{4}

x {}^{1}  =  \dfrac{ -  3 + 7}{4}  =  \dfrac{4}{4}  = 1

x {}^{2}  =  \dfrac{ - 3 - 7}{4}  =  -  \dfrac{10}{4}  =  -  \dfrac{10 {}^{ \div 2} }{4 {}^{ \div 2} }  =  -  \dfrac{5}{2}


nicolasmsouza41: Menina, faz tipo umas 3 semanas que eu postei isso mas obrigado mesmo assim
bmariadosocorro486: oi
francylenesousa11: oi bom
francylenesousa11: Oi aqui e a Amanda eu posso ser a tua amiga
bmariadosocorro486: Sim
bmariadosocorro486: sou homem
Perguntas interessantes