ENTRE OS PONTOS A(1/2,1),B(1,3/2)C(2,1) E D(0,2), QUAL É O MAIS DISTANTE DE E(1,1)?
Soluções para a tarefa
Respondido por
703
A formula de distancia é dada por:

Distância do pontos:
A ao E =
B ao E =
C ao E =
D ao E =
O mais distante de E é o ponto D com distancia
que equivale a aproximadamente 1,41
I hope you like it.
Distância do pontos:
A ao E =
B ao E =
C ao E =
D ao E =
O mais distante de E é o ponto D com distancia
I hope you like it.
Respondido por
4
Resposta:
O PONTO MAIS DISTANTE SERÁ D(0,2)
Explicação passo a passo:
prestem atenção que os pontos A,E e C são paralelos ao eixo x então para calcular a distância entre os pontos acima basta fazer a variação das coordenadas y, assim
dAE= = 1/2
dCE= = 1
agora observe que os pontos B e E são paralelos ao eixo y então para calcular a distância entre os pontos acima basta fazer a variação das coordenadas x, assim
dAE= = 1/2
agora para calcular a distância entre os pontos D e E devemos utilizar o teorema de pitagoras já que esses pontos não são paralelos um ao outro.
assim
d= =
assim o ponto mais distânte do ponto E é o ponto D
Perguntas interessantes
Matemática,
1 ano atrás
História,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás