Encontre o polinomio p (x), de grau 3, tal que : p (x+1)-p (x)=x2
Rainharosa2000:
Deixe o cálculo por favor.
Soluções para a tarefa
Respondido por
4
Sendo
![p(x) = ax^3 + bx^2 + cx + d p(x) = ax^3 + bx^2 + cx + d](https://tex.z-dn.net/?f=+p%28x%29+%3D+ax%5E3+%2B+bx%5E2+%2B+cx+%2B+d+)
Entao
![p(x+1) = a(x+1)^3 + b(x+1)^2 + c(x+1) + d \\ = a(x^3+3x^2+3x+1) + b(x^2 + 2x + 1) + c(x+1) + d \\ = ax^3 + (3a+b)x^2 + (3a+2b+c)x + (a+b+c+d) p(x+1) = a(x+1)^3 + b(x+1)^2 + c(x+1) + d \\ = a(x^3+3x^2+3x+1) + b(x^2 + 2x + 1) + c(x+1) + d \\ = ax^3 + (3a+b)x^2 + (3a+2b+c)x + (a+b+c+d)](https://tex.z-dn.net/?f=+p%28x%2B1%29+%3D+a%28x%2B1%29%5E3+%2B+b%28x%2B1%29%5E2+%2B+c%28x%2B1%29+%2B+d+%5C%5C+%3D+a%28x%5E3%2B3x%5E2%2B3x%2B1%29+%2B+b%28x%5E2+%2B+2x+%2B+1%29+%2B+c%28x%2B1%29+%2B+d+%5C%5C+%3D+ax%5E3+%2B+%283a%2Bb%29x%5E2+%2B+%283a%2B2b%2Bc%29x+%2B+%28a%2Bb%2Bc%2Bd%29+)
Como p(x+1)-p(x) = x^2
![ax^3 + (3a+b)x^2 + (3a+2b+c)x + (a+b+c+d) - ax^3 - bx^2 - cx - d = 0x^3 + 1x^2 + 0x + 0 \\ \implies 3ax^2 + (3a+2b)x + (a+b+c) = 0x^3 + 1x^2 + 0x + 0 \\ \\ \implies \\ \\ 3a = 1 \\ 3a+2b=0 \\ a+b+c = 0 \\ \\ \implies \\ \\ a= \frac{1}{3} \\ b=- \frac{1}{2} \\ c=\frac{1}{6} ax^3 + (3a+b)x^2 + (3a+2b+c)x + (a+b+c+d) - ax^3 - bx^2 - cx - d = 0x^3 + 1x^2 + 0x + 0 \\ \implies 3ax^2 + (3a+2b)x + (a+b+c) = 0x^3 + 1x^2 + 0x + 0 \\ \\ \implies \\ \\ 3a = 1 \\ 3a+2b=0 \\ a+b+c = 0 \\ \\ \implies \\ \\ a= \frac{1}{3} \\ b=- \frac{1}{2} \\ c=\frac{1}{6}](https://tex.z-dn.net/?f=+ax%5E3+%2B+%283a%2Bb%29x%5E2+%2B+%283a%2B2b%2Bc%29x+%2B+%28a%2Bb%2Bc%2Bd%29+-+ax%5E3+-+bx%5E2+-+cx+-+d+%3D+0x%5E3+%2B+1x%5E2+%2B+0x+%2B+0+%5C%5C+%5Cimplies+3ax%5E2+%2B+%283a%2B2b%29x+%2B+%28a%2Bb%2Bc%29+%3D+0x%5E3+%2B+1x%5E2+%2B+0x+%2B+0+%5C%5C+%5C%5C+%5Cimplies+%5C%5C+%5C%5C+3a+%3D+1+%5C%5C+3a%2B2b%3D0+%5C%5C+a%2Bb%2Bc+%3D+0+%5C%5C+%5C%5C+%5Cimplies+%5C%5C+%5C%5C+a%3D+%5Cfrac%7B1%7D%7B3%7D+%5C%5C+b%3D-+%5Cfrac%7B1%7D%7B2%7D+%5C%5C+c%3D%5Cfrac%7B1%7D%7B6%7D+)
Portanto
![\boxed{\boxed{ p(x) = \frac{1}{3} x^3 - \frac{1}{2} x^2 + \frac{1}{6} x + d}} \boxed{\boxed{ p(x) = \frac{1}{3} x^3 - \frac{1}{2} x^2 + \frac{1}{6} x + d}}](https://tex.z-dn.net/?f=+%5Cboxed%7B%5Cboxed%7B+p%28x%29+%3D+%5Cfrac%7B1%7D%7B3%7D+x%5E3+-+%5Cfrac%7B1%7D%7B2%7D+x%5E2+%2B+%5Cfrac%7B1%7D%7B6%7D+x+%2B+d%7D%7D+)
Sendo "d" qualquer real (as exigências enunciadas não restringem o valor de "d")
Entao
Como p(x+1)-p(x) = x^2
Portanto
Sendo "d" qualquer real (as exigências enunciadas não restringem o valor de "d")
Perguntas interessantes
História,
11 meses atrás
História,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás