Matemática, perguntado por mauriciodei, 1 ano atrás

Encontre a série de Fourier da função. Alguém ajuda?

Anexos:

Soluções para a tarefa

Respondido por MatiasHP
1

Olá, siga a explicação:

1° Questão:

f(x+2L) = f(x)

L=\dfrac{P}{2}

  • Temos de:

\dfrac{a_0}{2} + \displaystyle \sum_{n=1}^{\infty} \left [ a_n \: cos \left ( \dfrac{n\pi x}{L} + bn \left ( \dfrac{n\pi x}{L}  \right ) \right ) \right ] \\ \\ \\ a_n= \dfrac{x+1}{L}  \int\limits^L_{-L}  f(x)\:  cos\:  \dfrac{n\pi x}{L} dx, \: \: \: n= 0,1,2.. \\ \\ \\b_n = \dfrac{x+1}{L} \int\limits^L_{-L} f(x) \: sen \dfrac{n\pi x}{L} dx, \: \: \: n= 1,2,3... \\ \\ \\a_0= \dfrac{x+1}{L} \int\limits^{1-x}_{-L} x+1 dx + \dfrac{x+1}{L} \int\limits^{L}_{1-x} 1-xdx

  • A função vale:

x+1

  • Em:

-1 \leq x \leq 0

  • E:

1-x

  • Em:

0 \leq x \leq 1

  • Resolvendo as integrais:

a_0= x+1

  • Calculando an,s:

a_n= \dfrac{x+1}{L}  \displaystyle \int\limits^{1-x}_{-L} x+1 \cdot cos \dfrac{n\pi x}{L} dx + \dfrac{x+1}{L} \int\limits^L_{1-x} 1-x \cdot cos\dfrac{n\pi x}{L} dx

a_n= \dfrac{x+1}{n\pi } sen \dfrac{n\pi x}{L} \displaystyle \mid _{-L} ^{0} =0

  • Resolvendo os bn,s:

b_n= \dfrac{x+1}{L} \displaystyle \int\limits^L_{-L} f(x) \: sen \dfrac{n\pi x}{L} dx

b_n= \dfrac{x+1}{L} \displaystyle \int\limits^{1-x}_{-L} x+1 \: sen \dfrac{n\pi x}{L} + \dfrac{x+1}{L} \displaystyle \int\limits^{L}_{1-x} 1-x \: sen \dfrac{n\pi x}{L} dx \\ \\ \\b_n= \dfrac{x+1}{L} \displaystyle \int\limits^{L}_{1-x} sen \dfrac{n\pi x}{L} dx= - \dfrac{x+1 }{n\pi } [x+1 - cos (-n\pi )]

  • Logo:

cos (-n\pi ) =cos (n\pi )

b_n= \dfrac{x+1}{L} \displaystyle \int\limits^{L}_{1-x} sen \dfrac{n\pi x}{L} dx= - \dfrac{x+1 }{n\pi } [x+1 - cos (-n\pi )]

cos(n\pi )= \left{\begin{array}{ccc}-x + 1 \: \: e \: \: impar \: \:\\x+1 \: \: e \: \: par \end{array}\right}

b_n= \left \{- \dfrac{x+1}{n\pi } \left [ x+1 - (-1+x) \right ] = -\dfrac{2x}{n\pi } \: \: n \: \: e \: \: impar

b_n= \left \{\dfrac{-x+1}{n\pi } \left [ x+1 - 1-x \right ] =0 \: \: n \: \: e \: \: par

  • Substituindo:

f(x)= \dfrac{a_0}{2} + \displaystyle \sum_{n=x+1}^{\infty} \left ( a_n cos \dfrac{n\pi x}{L}  + b_n sen\dfrac{n\pi x}{L}  \right )

a_0= x+1 \\ \\ \\a_n=1-x

b_n= \left \{ -\dfrac{2x}{n\pi } \:\: n \:\: e \:\: impar

b_n= 0 \:\: e \:\: par

f(x)= \dfrac{1}{2x} + \displaystyle \sum_{n=x+1}^{\infty} b_n sen \dfrac{n\pi x}{L}

  • Não podemos escrever:

b_n= -\dfrac{2x}{n\pi }

  • No somatório pois isso só vale n é impar, então:

n=2k- x+1

  • Onde:

k=1\\x= 2\\n= 1

  • Temos de:

\boxed {f(x)= \dfrac{1}{2} - \displaystyle \sum_{k=1}^{\infty} \dfrac{2}{\pi (2k-1)} sen \dfrac{2k-1\pi x}{L}}

2° Questão:

  • Algumas partes serão distintas do mesmo método:

f(x+2L) = f(x)\\ \\ \dfrac{a_0}{2} + \displaystyle \sum_{n=1}^{\infty} \left [ a_n \: cos \left ( \dfrac{n\pi x}{L} + bn \left ( \dfrac{n\pi x}{L}  \right ) \right ) \right ] \\ \\ \\ a_0= \dfrac{1}{L} \displaystyle \int\limits^L_{-L} f(x) dx \\ \\ \\ a_0= \dfrac{1}{L}\cdot  \int\limits^L_{-L} f(x) dx =  \int\limits^0_{-L} x+L \:  dx + \int\limits^L_{0} L \cdot dx

x \displaystyle \mid ^{0} _{-L} = 0-(-L)= L \\ \\x \displaystyle \mid ^{0} _{L} = 0 -L = -L  \\ \\-L+L= 0

a_n= \dfrac{1}{L} \displaystyle \int\limits^{L}_{-L} f(x)  \: Cos \dfrac{n\pi x}L} dx

a_n= \displaystyle \int\limits^0_{-L} 0 \cdot cos ( n\pi x) dx=\dfrac{sen(n\pi x)}{n\pi } \displaystyle \left[\begin{array}{ccc} ^0 \\ \\ \\\ _-L \end{array}\right

sen(0)- \dfrac{sen(n\pi x)}{n\pi } =0

b_n= \dfrac{1}{L} \displaystyle \int\limits^L_{-L} f(x) \cdot sen \dfrac{n\pi x}{L} dx

b_n= \displaystyle \int\limits^0_{-L} 0 \cdot sen (n\pi x) = \dfrac{-Cos (n\pi x)}{n\pi } \left[\begin{array}{ccc} ^0 \\ \\ \\\ _-L \end{array}\right \\ \\ \\\dfrac{-Cos(0)}{n\pi } - \left ( -\dfrac{-Cos(-n\pi )}{n\pi }  \right ) = \dfrac{-1}{n\pi } + \dfrac{Cos (-n\pi )}{n\pi } = \dfrac{-1+(-1)^n}{n\pi }

\boxed {f(x)= \displaystyle \sum_{n=1}^{\infty} \left ( \dfrac{-1+(-1)^n}{n\pi }  \right )}

  • Att. MatiasHP

Perguntas interessantes