Matemática, perguntado por Alissonsk, 1 ano atrás

Encontre a segunda derivada.

Anexos:

Soluções para a tarefa

Respondido por DuarteME
2

Resposta:

\displaystyle\boxed{\dfrac{\textrm{d}^2}{\textrm{d}x^2}\int\limits_0^x \left(\int\limits_1^{\sin t} \sqrt{1+u^4}\textrm{ d}u\right)\textrm{ d}t = \cos x \sqrt{1+\sin^4 x}}.

Explicação passo-a-passo:

Seja \displaystyle f(\omega) = \int\limits_1^{\sin \omega} \sqrt{1+u^4}\textrm{ d}u.

Então, tem-se:

\displaystyle\int\limits_0^x \left(\int\limits_1^{\sin t} \sqrt{1+u^4}\textrm{ d}u\right)\textrm{ d}t = \int\limits_0^x f(t) \textrm{ d}t .

Do teorema fundamental do cálculo, vem:

\displaystyle\dfrac{\textrm{d}}{\textrm{d}x}\int\limits_0^x f(t) \textrm{ d}t = f(x),

pelo que:

\displaystyle\dfrac{\textrm{d}^2}{\textrm{d}x^2}\int\limits_0^x f(t) \textrm{ d}t = \dfrac{\textrm{d}f(x)}{\textrm{d}x}.

Definindo agora:

\displaystyle g(y) = \int\limits_1^{y} \sqrt{1+u^4} \textrm{ d}u,

concluímos que f(x) = g(\sin x), pelo que, da regra da cadeia:

\dfrac{\textrm{d}f(x)}{\textrm{d}x} =\dfrac{\textrm{d}[g(\sin x)]}{\textrm{d}x} =\dfrac{\textrm{d}g(y)}{\textrm{d}y}(\sin x)\dfrac{\textrm{d}}{\textrm{d}x}(\sin x) = \cos x \dfrac{\textrm{d}g(y)}{\textrm{d}y}(\sin x).

Aplicando de novo o teorema fundamental do cálculo, vem:

\displaystyle \dfrac{\textrm{d}g(y)}{\textrm{d}y} = \displaystyle \dfrac{\textrm{d}}{\textrm{d}y}\int\limits_1^{y} \sqrt{1+u^4} \textrm{ d}u = \sqrt{1+y^4}.

Portanto, tem-se por fim:

\displaystyle\boxed{\dfrac{\textrm{d}^2}{\textrm{d}x^2}\int\limits_0^x \left(\int\limits_1^{\sin t} \sqrt{1+u^4}\textrm{ d}u\right)\textrm{ d}t = \cos x \sqrt{1+\sin^4 x}}.


Alissonsk: Obrigado!
Perguntas interessantes