encontre a matriz inversa de (2 1 1 3)
Anexos:

Soluções para a tarefa
Respondido por
48
1) Calcular determinante da matriz:
![\displaystyle \det\left[\begin{array}{cc}2&1\\1&3\end{array}\right] =(2\cdot 3)-(1\cdot1)=6-1=\boxed{5} \displaystyle \det\left[\begin{array}{cc}2&1\\1&3\end{array}\right] =(2\cdot 3)-(1\cdot1)=6-1=\boxed{5}](https://tex.z-dn.net/?f=%5Cdisplaystyle+++%5Cdet%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26amp%3B1%5C%5C1%26amp%3B3%5Cend%7Barray%7D%5Cright%5D+%3D%282%5Ccdot+3%29-%281%5Ccdot1%29%3D6-1%3D%5Cboxed%7B5%7D)
2) Calcular conjugado transposto da matriz (Conjugado transposto é a transposta da matriz dos cofatores):
![A^*=\left[\begin{array}{cc}A_{11}&A_{21}\\A_{12}&A_{22}\end{array}\right]\\\\ A_{11}=-1^{1+1}\cdot3=3\\A_{12}=-1^{1+2}\cdot1=-1\\A_{21}=-1^{2+1}\cdot1=-1\\A_{22}=-1^{2+2}\cdot2=2\\\\ \bar{A}= \left[\begin{array}{cc}3&-1\\-1&2\end{array}\right] \implies \boxed{A^*= \left[\begin{array}{cc}3&-1\\-1&2\end{array}\right] } A^*=\left[\begin{array}{cc}A_{11}&A_{21}\\A_{12}&A_{22}\end{array}\right]\\\\ A_{11}=-1^{1+1}\cdot3=3\\A_{12}=-1^{1+2}\cdot1=-1\\A_{21}=-1^{2+1}\cdot1=-1\\A_{22}=-1^{2+2}\cdot2=2\\\\ \bar{A}= \left[\begin{array}{cc}3&-1\\-1&2\end{array}\right] \implies \boxed{A^*= \left[\begin{array}{cc}3&-1\\-1&2\end{array}\right] }](https://tex.z-dn.net/?f=A%5E%2A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DA_%7B11%7D%26amp%3BA_%7B21%7D%5C%5CA_%7B12%7D%26amp%3BA_%7B22%7D%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C+A_%7B11%7D%3D-1%5E%7B1%2B1%7D%5Ccdot3%3D3%5C%5CA_%7B12%7D%3D-1%5E%7B1%2B2%7D%5Ccdot1%3D-1%5C%5CA_%7B21%7D%3D-1%5E%7B2%2B1%7D%5Ccdot1%3D-1%5C%5CA_%7B22%7D%3D-1%5E%7B2%2B2%7D%5Ccdot2%3D2%5C%5C%5C%5C+%5Cbar%7BA%7D%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26amp%3B-1%5C%5C-1%26amp%3B2%5Cend%7Barray%7D%5Cright%5D+%5Cimplies+%5Cboxed%7BA%5E%2A%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26amp%3B-1%5C%5C-1%26amp%3B2%5Cend%7Barray%7D%5Cright%5D+%7D)
3) Calcular matriz inversa:
Seja A uma matriz inversível, sua matriz inversa será dada por:

No nosso caso:
![\displaystyle A^{-1}=\frac{1}{5}\left[\begin{array}{cc}3&-1\\-1&2\end{array}\right]=\boxed{\boxed{ \left[\begin{array}{cc}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{array}\right]}} \displaystyle A^{-1}=\frac{1}{5}\left[\begin{array}{cc}3&-1\\-1&2\end{array}\right]=\boxed{\boxed{ \left[\begin{array}{cc}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{array}\right]}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+A%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B5%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26amp%3B-1%5C%5C-1%26amp%3B2%5Cend%7Barray%7D%5Cright%5D%3D%5Cboxed%7B%5Cboxed%7B+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B5%7D%26amp%3B-%5Cfrac%7B1%7D%7B5%7D%5C%5C-%5Cfrac%7B1%7D%7B5%7D%26amp%3B%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D%7D%7D)
4) comprovar:
Ao multiplicarmos uma matriz pela sua inversa, obteremos a matriz identidade
![\displaystyle \left[\begin{array}{cc}2&1\\1&3\end{array}\right]\cdot\left[\begin{array}{cc}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{array}\right]=
\left[\begin{array}{cc}(\frac{6}{5}-\frac{1}{5})&(-\frac{2}{5}+\frac{2}{5})\\\\(\frac{3}{5}-\frac{3}{5})&(-\frac{1}{5}+\frac{6}{5})\end{array}\right] =\left[\begin{array}{cc}1&0\\0&1\end{array}\right] \displaystyle \left[\begin{array}{cc}2&1\\1&3\end{array}\right]\cdot\left[\begin{array}{cc}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{array}\right]=
\left[\begin{array}{cc}(\frac{6}{5}-\frac{1}{5})&(-\frac{2}{5}+\frac{2}{5})\\\\(\frac{3}{5}-\frac{3}{5})&(-\frac{1}{5}+\frac{6}{5})\end{array}\right] =\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26amp%3B1%5C%5C1%26amp%3B3%5Cend%7Barray%7D%5Cright%5D%5Ccdot%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B5%7D%26amp%3B-%5Cfrac%7B1%7D%7B5%7D%5C%5C-%5Cfrac%7B1%7D%7B5%7D%26amp%3B%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D%3D%0A+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%28%5Cfrac%7B6%7D%7B5%7D-%5Cfrac%7B1%7D%7B5%7D%29%26amp%3B%28-%5Cfrac%7B2%7D%7B5%7D%2B%5Cfrac%7B2%7D%7B5%7D%29%5C%5C%5C%5C%28%5Cfrac%7B3%7D%7B5%7D-%5Cfrac%7B3%7D%7B5%7D%29%26amp%3B%28-%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B6%7D%7B5%7D%29%5Cend%7Barray%7D%5Cright%5D+%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26amp%3B0%5C%5C0%26amp%3B1%5Cend%7Barray%7D%5Cright%5D)
Então:
A matriz inversa da dada na questão é:
![\boxed{\boxed{A^{-1}=\left[\begin{array}{cc}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{array}\right]}} \boxed{\boxed{A^{-1}=\left[\begin{array}{cc}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{array}\right]}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7BA%5E%7B-1%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B5%7D%26amp%3B-%5Cfrac%7B1%7D%7B5%7D%5C%5C-%5Cfrac%7B1%7D%7B5%7D%26amp%3B%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D%7D%7D)
2) Calcular conjugado transposto da matriz (Conjugado transposto é a transposta da matriz dos cofatores):
3) Calcular matriz inversa:
Seja A uma matriz inversível, sua matriz inversa será dada por:
No nosso caso:
4) comprovar:
Ao multiplicarmos uma matriz pela sua inversa, obteremos a matriz identidade
Então:
A matriz inversa da dada na questão é:
Perguntas interessantes
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Administração,
1 ano atrás
Administração,
1 ano atrás
Matemática,
1 ano atrás