Encontre a fórmula fechada de somas e subtrações intercaladas dos n primeiros quadrados.

__________________________________________
Por favor responder de forma detalhada. Respostas com brincadeiras serão eliminadas.
Soluções para a tarefa
Respondido por
2
Seja
o operador de diferença anterior de qualquer sequência real
. Então, para quaisquer
,
sequências e
constante:

___________________________________
Vamos encontrar
:


Isolando
:
![\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})+2(-1)^{k}\cdot k+(-1)^{k}\bigg]} \mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})+2(-1)^{k}\cdot k+(-1)^{k}\bigg]}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28-1%29%5E%7Bk%7D%5Ccdot+k%5E%7B2%7D%3D-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B%5CDelta%28a_%7Bk%7D%29%2B2%28-1%29%5E%7Bk%7D%5Ccdot+k%2B%28-1%29%5E%7Bk%7D%5Cbigg%5D%7D)
Agora vamos achar
:
![\mathsf{\Delta(b_{k})=b_{k+1}-b_{k}}\\\\\mathsf{\Delta(b_{k})=(-1)^{k+1}\cdot(k+1)-(-1)^{k}\cdot k}\\\\\mathsf{\Delta(b_{k})=(-1)^{k+1}\cdot k+(-1)^{k+1}-(-1)^{k}\cdot k}\\\\\mathsf{\Delta(b_{k})=(-1)(-1)^{k}\cdot k-(-1)^{k}\cdot k+(-1)(-1)^{k}}\\\\\mathsf{\Delta(b_{k})=-(-1)^{k}\cdot k-(-1)^{k}\cdot k-(-1)^{k}}\\\\\mathsf{\Delta(b_{k})=-2(-1)^{k}\cdot k-(-1)^{k}}\\\\\Longrightarrow\,\,\mathsf{(-1)^{k}\cdot k=-\dfrac{1}{2}\bigg[\Delta(b_{k})+(-1)^{k}\bigg]} \mathsf{\Delta(b_{k})=b_{k+1}-b_{k}}\\\\\mathsf{\Delta(b_{k})=(-1)^{k+1}\cdot(k+1)-(-1)^{k}\cdot k}\\\\\mathsf{\Delta(b_{k})=(-1)^{k+1}\cdot k+(-1)^{k+1}-(-1)^{k}\cdot k}\\\\\mathsf{\Delta(b_{k})=(-1)(-1)^{k}\cdot k-(-1)^{k}\cdot k+(-1)(-1)^{k}}\\\\\mathsf{\Delta(b_{k})=-(-1)^{k}\cdot k-(-1)^{k}\cdot k-(-1)^{k}}\\\\\mathsf{\Delta(b_{k})=-2(-1)^{k}\cdot k-(-1)^{k}}\\\\\Longrightarrow\,\,\mathsf{(-1)^{k}\cdot k=-\dfrac{1}{2}\bigg[\Delta(b_{k})+(-1)^{k}\bigg]}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5CDelta%28b_%7Bk%7D%29%3Db_%7Bk%2B1%7D-b_%7Bk%7D%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%28b_%7Bk%7D%29%3D%28-1%29%5E%7Bk%2B1%7D%5Ccdot%28k%2B1%29-%28-1%29%5E%7Bk%7D%5Ccdot+k%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%28b_%7Bk%7D%29%3D%28-1%29%5E%7Bk%2B1%7D%5Ccdot+k%2B%28-1%29%5E%7Bk%2B1%7D-%28-1%29%5E%7Bk%7D%5Ccdot+k%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%28b_%7Bk%7D%29%3D%28-1%29%28-1%29%5E%7Bk%7D%5Ccdot+k-%28-1%29%5E%7Bk%7D%5Ccdot+k%2B%28-1%29%28-1%29%5E%7Bk%7D%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%28b_%7Bk%7D%29%3D-%28-1%29%5E%7Bk%7D%5Ccdot+k-%28-1%29%5E%7Bk%7D%5Ccdot+k-%28-1%29%5E%7Bk%7D%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%28b_%7Bk%7D%29%3D-2%28-1%29%5E%7Bk%7D%5Ccdot+k-%28-1%29%5E%7Bk%7D%7D%5C%5C%5C%5C%5CLongrightarrow%5C%2C%5C%2C%5Cmathsf%7B%28-1%29%5E%7Bk%7D%5Ccdot+k%3D-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B%5CDelta%28b_%7Bk%7D%29%2B%28-1%29%5E%7Bk%7D%5Cbigg%5D%7D)
Então:
![\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})+2(-1)^{k}\cdot k+(-1)^{k}\bigg]}\\\\\\\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})+2\cdot(-\frac{1}{2})\big[\Delta(b_{k})+(-1)^{k}\big]+(-1)^{k}\bigg]}\\\\\\\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})-\Delta(b_{k})-(-1)^{k}+(-1)^{k}}\bigg]}\\\\\\\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\Delta(a_{k}-b_{k})} \mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})+2(-1)^{k}\cdot k+(-1)^{k}\bigg]}\\\\\\\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})+2\cdot(-\frac{1}{2})\big[\Delta(b_{k})+(-1)^{k}\big]+(-1)^{k}\bigg]}\\\\\\\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})-\Delta(b_{k})-(-1)^{k}+(-1)^{k}}\bigg]}\\\\\\\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\Delta(a_{k}-b_{k})}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28-1%29%5E%7Bk%7D%5Ccdot+k%5E%7B2%7D%3D-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B%5CDelta%28a_%7Bk%7D%29%2B2%28-1%29%5E%7Bk%7D%5Ccdot+k%2B%28-1%29%5E%7Bk%7D%5Cbigg%5D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%28-1%29%5E%7Bk%7D%5Ccdot+k%5E%7B2%7D%3D-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B%5CDelta%28a_%7Bk%7D%29%2B2%5Ccdot%28-%5Cfrac%7B1%7D%7B2%7D%29%5Cbig%5B%5CDelta%28b_%7Bk%7D%29%2B%28-1%29%5E%7Bk%7D%5Cbig%5D%2B%28-1%29%5E%7Bk%7D%5Cbigg%5D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%28-1%29%5E%7Bk%7D%5Ccdot+k%5E%7B2%7D%3D-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B%5CDelta%28a_%7Bk%7D%29-%5CDelta%28b_%7Bk%7D%29-%28-1%29%5E%7Bk%7D%2B%28-1%29%5E%7Bk%7D%7D%5Cbigg%5D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%28-1%29%5E%7Bk%7D%5Ccdot+k%5E%7B2%7D%3D-%5Cdfrac%7B1%7D%7B2%7D%5CDelta%28a_%7Bk%7D-b_%7Bk%7D%29%7D)
Logo,
![\displaystyle\mathsf{\sum_{k=1}^{n}(-1)^{k}\cdot k^{2}=}\\\\\\\mathsf{\sum_{k=1}^{n}-\dfrac{1}{2}\Delta(a_{k}-b_{k})=}\\\\\\\mathsf{-\dfrac{1}{2}\sum_{k=1}^{n}\Delta(a_{k}-b_{k})=}\\\\\\\mathsf{-\dfrac{1}{2}\bigg[\big(a_{n+1}-b_{n+1}\big)-\big(a_{1}-b_{1}\big)\bigg]=}\\\\\\\mathsf{-\dfrac{1}{2}\bigg[(-1)^{n+1}(n+1)^{2}-(-1)^{n+1}(n+1)-(-1)^{1}\cdot1^{2}+(-1)^{1}\cdot1\bigg]=}\\\\\\\mathsf{-\dfrac{1}{2}\bigg[(-1)^{n+1}(n+1)^{2}-(-1)^{n+1}(n+1)\bigg]=} \displaystyle\mathsf{\sum_{k=1}^{n}(-1)^{k}\cdot k^{2}=}\\\\\\\mathsf{\sum_{k=1}^{n}-\dfrac{1}{2}\Delta(a_{k}-b_{k})=}\\\\\\\mathsf{-\dfrac{1}{2}\sum_{k=1}^{n}\Delta(a_{k}-b_{k})=}\\\\\\\mathsf{-\dfrac{1}{2}\bigg[\big(a_{n+1}-b_{n+1}\big)-\big(a_{1}-b_{1}\big)\bigg]=}\\\\\\\mathsf{-\dfrac{1}{2}\bigg[(-1)^{n+1}(n+1)^{2}-(-1)^{n+1}(n+1)-(-1)^{1}\cdot1^{2}+(-1)^{1}\cdot1\bigg]=}\\\\\\\mathsf{-\dfrac{1}{2}\bigg[(-1)^{n+1}(n+1)^{2}-(-1)^{n+1}(n+1)\bigg]=}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7B%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%28-1%29%5E%7Bk%7D%5Ccdot+k%5E%7B2%7D%3D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Csum_%7Bk%3D1%7D%5E%7Bn%7D-%5Cdfrac%7B1%7D%7B2%7D%5CDelta%28a_%7Bk%7D-b_%7Bk%7D%29%3D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-%5Cdfrac%7B1%7D%7B2%7D%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5CDelta%28a_%7Bk%7D-b_%7Bk%7D%29%3D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B%5Cbig%28a_%7Bn%2B1%7D-b_%7Bn%2B1%7D%5Cbig%29-%5Cbig%28a_%7B1%7D-b_%7B1%7D%5Cbig%29%5Cbigg%5D%3D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B%28-1%29%5E%7Bn%2B1%7D%28n%2B1%29%5E%7B2%7D-%28-1%29%5E%7Bn%2B1%7D%28n%2B1%29-%28-1%29%5E%7B1%7D%5Ccdot1%5E%7B2%7D%2B%28-1%29%5E%7B1%7D%5Ccdot1%5Cbigg%5D%3D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B%28-1%29%5E%7Bn%2B1%7D%28n%2B1%29%5E%7B2%7D-%28-1%29%5E%7Bn%2B1%7D%28n%2B1%29%5Cbigg%5D%3D%7D)
![\mathsf{-\dfrac{1}{2}(-1)^{n+1}(n+1)\big[(n+1)-1\big]=}\\\\\\\mathsf{=-\dfrac{1}{2}(-1)(-1)^{n}(n+1)\cdot n}\\\\\\\mathsf{=(-1)^{n}\cdot\dfrac{n(n+1)}{2}} \mathsf{-\dfrac{1}{2}(-1)^{n+1}(n+1)\big[(n+1)-1\big]=}\\\\\\\mathsf{=-\dfrac{1}{2}(-1)(-1)^{n}(n+1)\cdot n}\\\\\\\mathsf{=(-1)^{n}\cdot\dfrac{n(n+1)}{2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B-%5Cdfrac%7B1%7D%7B2%7D%28-1%29%5E%7Bn%2B1%7D%28n%2B1%29%5Cbig%5B%28n%2B1%29-1%5Cbig%5D%3D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%3D-%5Cdfrac%7B1%7D%7B2%7D%28-1%29%28-1%29%5E%7Bn%7D%28n%2B1%29%5Ccdot+n%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%3D%28-1%29%5E%7Bn%7D%5Ccdot%5Cdfrac%7Bn%28n%2B1%29%7D%7B2%7D%7D)
Concluímos, portanto, que

___________________________________
Vamos encontrar
Isolando
Agora vamos achar
Então:
Logo,
Concluímos, portanto, que
superaks:
Que aula!!! Mesmo para quem é leigo ainda em somas telescópicas, vai conseguir entender com essa resposta super detalhada. Obrigado Niiya!! =)
Respondido por
0
Resposta:
Explicação passo a passo:
Ficou show sou
Perguntas interessantes