encontre a derivação da função
a) f (x) = sen ( -3x)
b) g (t) = ![t^{3} cos t t^{3} cos t](https://tex.z-dn.net/?f=+t%5E%7B3%7D+cos+t)
c) y = ![\frac{x}{2-tgx} \frac{x}{2-tgx}](https://tex.z-dn.net/?f=+%5Cfrac%7Bx%7D%7B2-tgx%7D+)
d) y =
Soluções para a tarefa
Respondido por
1
a) ![\mathtt{f(x)=sen(-3 x)} \mathtt{f(x)=sen(-3 x)}](https://tex.z-dn.net/?f=%5Cmathtt%7Bf%28x%29%3Dsen%28-3+x%29%7D)
Derive usando a Regra da Cadeia:
![\mathtt{\dfrac{df}{dx}=\dfrac{d}{dx}(sen(-3 x))}\\\\\\ \mathtt{\dfrac{df}{dx}=cos(-3x)\cdot \dfrac{d}{dx}(-3x)}\\\\\\ \mathtt{\dfrac{df}{dx}=cos(-3x)\cdot (-3)}\\\\\\ \mathtt{\dfrac{df}{dx}=-3\,cos(-3x)} \mathtt{\dfrac{df}{dx}=\dfrac{d}{dx}(sen(-3 x))}\\\\\\ \mathtt{\dfrac{df}{dx}=cos(-3x)\cdot \dfrac{d}{dx}(-3x)}\\\\\\ \mathtt{\dfrac{df}{dx}=cos(-3x)\cdot (-3)}\\\\\\ \mathtt{\dfrac{df}{dx}=-3\,cos(-3x)}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Cdfrac%7Bdf%7D%7Bdx%7D%3D%5Cdfrac%7Bd%7D%7Bdx%7D%28sen%28-3+x%29%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdf%7D%7Bdx%7D%3Dcos%28-3x%29%5Ccdot+%5Cdfrac%7Bd%7D%7Bdx%7D%28-3x%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdf%7D%7Bdx%7D%3Dcos%28-3x%29%5Ccdot+%28-3%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdf%7D%7Bdx%7D%3D-3%5C%2Ccos%28-3x%29%7D)
Como a função cosseno é uma função par,
![\boxed{\begin{array}{c}\mathtt{\dfrac{df}{dx}=-3\,cos(3x)} \end{array}} \boxed{\begin{array}{c}\mathtt{\dfrac{df}{dx}=-3\,cos(3x)} \end{array}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathtt%7B%5Cdfrac%7Bdf%7D%7Bdx%7D%3D-3%5C%2Ccos%283x%29%7D+%5Cend%7Barray%7D%7D)
_________
b)![\mathtt{g(t)=t^3\,cos\,t} \mathtt{g(t)=t^3\,cos\,t}](https://tex.z-dn.net/?f=%5Cmathtt%7Bg%28t%29%3Dt%5E3%5C%2Ccos%5C%2Ct%7D)
Deriva usando a Regra do Produto:
![\mathtt{\dfrac{dg}{dt}=\dfrac{d}{dt}(t^3\,cos\,t)}\\\\\\ \mathtt{\dfrac{dg}{dt}=\dfrac{d}{dt}(t^3)\cdot cos\,t+t^3\cdot \dfrac{d}{dt}(cos\,t)}\\\\\\ \mathtt{\dfrac{dg}{dt}=3t^2\cdot cos\,t+t^3\cdot (-sen\,t)}\\\\\\ \boxed{\begin{array}{c}\mathtt{\dfrac{dg}{dt}=3t^2\,cos\,t-t^3\,sen\,t} \end{array}} \mathtt{\dfrac{dg}{dt}=\dfrac{d}{dt}(t^3\,cos\,t)}\\\\\\ \mathtt{\dfrac{dg}{dt}=\dfrac{d}{dt}(t^3)\cdot cos\,t+t^3\cdot \dfrac{d}{dt}(cos\,t)}\\\\\\ \mathtt{\dfrac{dg}{dt}=3t^2\cdot cos\,t+t^3\cdot (-sen\,t)}\\\\\\ \boxed{\begin{array}{c}\mathtt{\dfrac{dg}{dt}=3t^2\,cos\,t-t^3\,sen\,t} \end{array}}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Cdfrac%7Bdg%7D%7Bdt%7D%3D%5Cdfrac%7Bd%7D%7Bdt%7D%28t%5E3%5C%2Ccos%5C%2Ct%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdg%7D%7Bdt%7D%3D%5Cdfrac%7Bd%7D%7Bdt%7D%28t%5E3%29%5Ccdot+cos%5C%2Ct%2Bt%5E3%5Ccdot+%5Cdfrac%7Bd%7D%7Bdt%7D%28cos%5C%2Ct%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdg%7D%7Bdt%7D%3D3t%5E2%5Ccdot+cos%5C%2Ct%2Bt%5E3%5Ccdot+%28-sen%5C%2Ct%29%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathtt%7B%5Cdfrac%7Bdg%7D%7Bdt%7D%3D3t%5E2%5C%2Ccos%5C%2Ct-t%5E3%5C%2Csen%5C%2Ct%7D+%5Cend%7Barray%7D%7D)
_________
c)![\mathtt{y=\dfrac{x}{2-tg\,x}} \mathtt{y=\dfrac{x}{2-tg\,x}}](https://tex.z-dn.net/?f=%5Cmathtt%7By%3D%5Cdfrac%7Bx%7D%7B2-tg%5C%2Cx%7D%7D)
Deriva usando a Regra do Quociente:
![\mathtt{\dfrac{dy}{dx}=\dfrac{d}{dx}\!\left(\dfrac{x}{2-tg\,x} \right )}\\\\\\ \mathtt{\dfrac{dy}{dx}=\dfrac{\frac{d}{dx}(x)\cdot (2-tg\,x)-x\cdot \frac{d}{dx}(2-tg\,x)}{(2-tg\,x)^2}}\\\\\\ \mathtt{\dfrac{dy}{dx}=\dfrac{1\cdot (2-tg\,x)-x\cdot (0-sec^2\,x)}{(2-tg\,x)^2}}\\\\\\ \boxed{\begin{array}{c}\mathtt{\dfrac{dy}{dx}=\dfrac{2-tg\,x+x\,sec^2\,x}{(2-tg\,x)^2}} \end{array}} \mathtt{\dfrac{dy}{dx}=\dfrac{d}{dx}\!\left(\dfrac{x}{2-tg\,x} \right )}\\\\\\ \mathtt{\dfrac{dy}{dx}=\dfrac{\frac{d}{dx}(x)\cdot (2-tg\,x)-x\cdot \frac{d}{dx}(2-tg\,x)}{(2-tg\,x)^2}}\\\\\\ \mathtt{\dfrac{dy}{dx}=\dfrac{1\cdot (2-tg\,x)-x\cdot (0-sec^2\,x)}{(2-tg\,x)^2}}\\\\\\ \boxed{\begin{array}{c}\mathtt{\dfrac{dy}{dx}=\dfrac{2-tg\,x+x\,sec^2\,x}{(2-tg\,x)^2}} \end{array}}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bd%7D%7Bdx%7D%5C%21%5Cleft%28%5Cdfrac%7Bx%7D%7B2-tg%5C%2Cx%7D+%5Cright+%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%28x%29%5Ccdot+%282-tg%5C%2Cx%29-x%5Ccdot+%5Cfrac%7Bd%7D%7Bdx%7D%282-tg%5C%2Cx%29%7D%7B%282-tg%5C%2Cx%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%5Ccdot+%282-tg%5C%2Cx%29-x%5Ccdot+%280-sec%5E2%5C%2Cx%29%7D%7B%282-tg%5C%2Cx%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B2-tg%5C%2Cx%2Bx%5C%2Csec%5E2%5C%2Cx%7D%7B%282-tg%5C%2Cx%29%5E2%7D%7D+%5Cend%7Barray%7D%7D)
_________
d)![\mathtt{y=\dfrac{t\,sen\,t}{1+t}} \mathtt{y=\dfrac{t\,sen\,t}{1+t}}](https://tex.z-dn.net/?f=%5Cmathtt%7By%3D%5Cdfrac%7Bt%5C%2Csen%5C%2Ct%7D%7B1%2Bt%7D%7D)
Deriva usando a Regra do Quociente, combinada com a Regra do Produto:
![\mathtt{\dfrac{dy}{dt}=\dfrac{d}{dt}\!\left(\dfrac{t\,sen\,t}{1+t}\right)}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{\frac{d}{dt}(t\,sen\,t)\cdot (1+t)-t\,sen\,t\cdot \frac{d}{dt}(1+t)}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{\left(\frac{d}{dt}(t)\cdot sen\,t+t\cdot \frac{d}{dt}(sen\,t) \right )\cdot (1+t)-t\,sen\,t\cdot (0+1)}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{(1\cdot sen\,t+t\cdot cos\,t)\cdot (1+t)-t\,sen\,t\cdot 1}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{(sen\,t+t\,cos\,t)\cdot (1+t)-t\,sen\,t}{(1+t)^2}} \mathtt{\dfrac{dy}{dt}=\dfrac{d}{dt}\!\left(\dfrac{t\,sen\,t}{1+t}\right)}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{\frac{d}{dt}(t\,sen\,t)\cdot (1+t)-t\,sen\,t\cdot \frac{d}{dt}(1+t)}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{\left(\frac{d}{dt}(t)\cdot sen\,t+t\cdot \frac{d}{dt}(sen\,t) \right )\cdot (1+t)-t\,sen\,t\cdot (0+1)}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{(1\cdot sen\,t+t\cdot cos\,t)\cdot (1+t)-t\,sen\,t\cdot 1}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{(sen\,t+t\,cos\,t)\cdot (1+t)-t\,sen\,t}{(1+t)^2}}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdt%7D%3D%5Cdfrac%7Bd%7D%7Bdt%7D%5C%21%5Cleft%28%5Cdfrac%7Bt%5C%2Csen%5C%2Ct%7D%7B1%2Bt%7D%5Cright%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdt%7D%3D%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdt%7D%28t%5C%2Csen%5C%2Ct%29%5Ccdot+%281%2Bt%29-t%5C%2Csen%5C%2Ct%5Ccdot+%5Cfrac%7Bd%7D%7Bdt%7D%281%2Bt%29%7D%7B%281%2Bt%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdt%7D%3D%5Cdfrac%7B%5Cleft%28%5Cfrac%7Bd%7D%7Bdt%7D%28t%29%5Ccdot+sen%5C%2Ct%2Bt%5Ccdot+%5Cfrac%7Bd%7D%7Bdt%7D%28sen%5C%2Ct%29+%5Cright+%29%5Ccdot+%281%2Bt%29-t%5C%2Csen%5C%2Ct%5Ccdot+%280%2B1%29%7D%7B%281%2Bt%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdt%7D%3D%5Cdfrac%7B%281%5Ccdot+sen%5C%2Ct%2Bt%5Ccdot+cos%5C%2Ct%29%5Ccdot+%281%2Bt%29-t%5C%2Csen%5C%2Ct%5Ccdot+1%7D%7B%281%2Bt%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdt%7D%3D%5Cdfrac%7B%28sen%5C%2Ct%2Bt%5C%2Ccos%5C%2Ct%29%5Ccdot+%281%2Bt%29-t%5C%2Csen%5C%2Ct%7D%7B%281%2Bt%29%5E2%7D%7D)
Fazendo a distributiva,
![\mathtt{\dfrac{dy}{dt}=\dfrac{sen\,t+t\,cos\,t+t\,sen\,t+t^2\,cos\,t-t\,sen\,t}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{sen\,t+t\,cos\,t+t^2\,cos\,t}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{sen\,t+(t+t^2)cos\,t}{(1+t)^2}}\\\\\\ \boxed{\begin{array}{c}\mathtt{\dfrac{dy}{dt}=\dfrac{sen\,t+t(1+t)cos\,t}{(1+t)^2}} \end{array}} \mathtt{\dfrac{dy}{dt}=\dfrac{sen\,t+t\,cos\,t+t\,sen\,t+t^2\,cos\,t-t\,sen\,t}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{sen\,t+t\,cos\,t+t^2\,cos\,t}{(1+t)^2}}\\\\\\ \mathtt{\dfrac{dy}{dt}=\dfrac{sen\,t+(t+t^2)cos\,t}{(1+t)^2}}\\\\\\ \boxed{\begin{array}{c}\mathtt{\dfrac{dy}{dt}=\dfrac{sen\,t+t(1+t)cos\,t}{(1+t)^2}} \end{array}}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdt%7D%3D%5Cdfrac%7Bsen%5C%2Ct%2Bt%5C%2Ccos%5C%2Ct%2Bt%5C%2Csen%5C%2Ct%2Bt%5E2%5C%2Ccos%5C%2Ct-t%5C%2Csen%5C%2Ct%7D%7B%281%2Bt%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdt%7D%3D%5Cdfrac%7Bsen%5C%2Ct%2Bt%5C%2Ccos%5C%2Ct%2Bt%5E2%5C%2Ccos%5C%2Ct%7D%7B%281%2Bt%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdt%7D%3D%5Cdfrac%7Bsen%5C%2Ct%2B%28t%2Bt%5E2%29cos%5C%2Ct%7D%7B%281%2Bt%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdt%7D%3D%5Cdfrac%7Bsen%5C%2Ct%2Bt%281%2Bt%29cos%5C%2Ct%7D%7B%281%2Bt%29%5E2%7D%7D+%5Cend%7Barray%7D%7D)
Dúvidas? Comente.
Bons estudos! :-)
Derive usando a Regra da Cadeia:
Como a função cosseno é uma função par,
_________
b)
Deriva usando a Regra do Produto:
_________
c)
Deriva usando a Regra do Quociente:
_________
d)
Deriva usando a Regra do Quociente, combinada com a Regra do Produto:
Fazendo a distributiva,
Dúvidas? Comente.
Bons estudos! :-)
Lukyo:
Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6275014
Perguntas interessantes
História,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Geografia,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás