Em uma urna contendo bola inumeradas de 1 a 20. Determine a probabilidade de ser sorteada aleatoriamente uma bola que apresente:
a) um número ímpar
b) um número primo
c) um divisor de 20
d) um múltiplo de 6
Soluções para a tarefa
Respondido por
2
Resposta:
Explicação passo-a-passo:
Consideremos (s) = espaço amostral
(A) = evento
a) Um número ímpar:
n (s) = 20, pois o total de bolas é 20
n (A) = 10, pois temos 10 números ímpares dentre esses 20
p (A) = 10 / 20
p (A) = 1/2 = 50%
b) Um número primo:
n (s) = 20
n (A) = 8, pois temos os números primos: 2, 3, 5, 7, 11, 13, 17, 19
p (A) = 8/20 = 0,4 = 40%
c) Um divisor de 20:
n (s)= 20
n (A) = 6, pois os divisores de 20 são : 1, 2, 4, 5, 10 e 20
p (A) = 6 / 20 = 0,3 = 30%
d) Um múltiplo de 6:
n (s) = 20
n (A) = 3, pois os múltiplos de 6 são : 6, 12, 18
p (A) = 3/20 = 0,15 = 15%
Espero ter ajudado!
Perguntas interessantes
História,
7 meses atrás
Sociologia,
7 meses atrás
Inglês,
7 meses atrás
Matemática,
10 meses atrás
Física,
10 meses atrás
Matemática,
1 ano atrás
Direito,
1 ano atrás