em uma localidade onde havia um microssistema para a produção de energia eólica, constatou-se que, em determinado dia, a velocidade dos ventos, em km/h, podia ser aproximado pela função quadrática v(t)=5t^2/72+5t/3+20, em que 0<t<24 é o tempo, expresso em horas ou fração.
(c)(e) no dia em questão, a velocidade máxima dos ventos foi atingida depois das 14 horas.
Soluções para a tarefa
Respondido por
3
O gráfico destinado à função é uma parábola com a concavidade voltada para baixo, pois em y = ax² + bx + c, se a > 0, então tem a parábola voltada para baixo (carinha triste). Significa que há ponto de máximo. Neste tipo de função o eixo x é o tempo t e v(t) é o eixo y. Para encontrar o tempo, que é o que se pede na questão, que gera o ponto máximo, utiliza-se -b/2a
sendo que a = -5/72; b = 5/3 e c = 20
utilizando a fórmula, tem-se -(5/3) dividido por 2(-5/72)
resolvendo fração sobre fração e resolvendo o sinal tem-se
5/3 . 72/5 = 12 h (que é inferior a 14h)
Logo, a questão está ERRADA
Perguntas interessantes
História,
9 meses atrás
História,
9 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Português,
1 ano atrás