Em um rectângulo, a medida da diagonal é expressa por (x+8) cm e as medidas dos lados são expressas por x com e 12 cm. Nessas condições, qual é o perímetro desse rectângulo?
Soluções para a tarefa
Respondido por
1
Resposta:
Olá bom dia!
A diagonal de um retângulo é a hipotenusa que divide o retângulo em dois triângulos retângulos. Significa então que, por Pitágoras:
(x + 8)² = x² + 12²
x² + 2*x*8 + 8² = x² + 1144
16x + 64 = 1144
16x = 1144 - 64
16x = 1080
x = 1080 : 16
x = 67,5
Como x = 67,5 então o perímetro (P) (soma dos lados de um polígono) é:
P = 12 + 12 + 67,5 + 67,5
P = 24 + 135
P = 159 cm
julyanicolelikunda78:
12²=114 e cê disse 1114 e aí embaraçou tudo,mas obrigada
Perguntas interessantes
Português,
5 meses atrás
Matemática,
6 meses atrás
Física,
6 meses atrás
História,
11 meses atrás
Física,
11 meses atrás