Em um quintal há 30 animais, entre galinhas e coelhos sabendo-se que eles têm ao todo 82 pernas, quantos são os coelhos e quantas são as galinhas?
Soluções para a tarefa
Respondido por
6
G + C= 30 (I)
2G+4C=83 (II)
multiplicando (I) por -2
-2G - 2C = -60
2G + 4C = 82
2C=22
C=11
G+11= 30
G=19
temos 11 coelhos e 19 galinhas
2G+4C=83 (II)
multiplicando (I) por -2
-2G - 2C = -60
2G + 4C = 82
2C=22
C=11
G+11= 30
G=19
temos 11 coelhos e 19 galinhas
Respondido por
14
Nomearemos o número total de coelhos nessa fazenda de Y e o de galinhas de X. Sabe-se que há no total 30 animais e 82 pés (galinhas --> 2 pés e coelhos---> 4 pés). Com essas informações montamos o sistema de duas icógnitas a seguir .:
{X+Y=30 ===> X= 30-Y
{2X+4Y= 82
Utilizando o método da substituição.:
2(30-Y)+4Y= 82
60-2Y+ 4Y= 82
-2Y+4Y= 82-60
2Y= 22
Y= 11
X+11= 30
X= 30-11
X= 19
Sendo S={19, 11} o número de coelhos neste quintal é 11 e de galinhas é 19.
Espero ter ajudado !
{X+Y=30 ===> X= 30-Y
{2X+4Y= 82
Utilizando o método da substituição.:
2(30-Y)+4Y= 82
60-2Y+ 4Y= 82
-2Y+4Y= 82-60
2Y= 22
Y= 11
X+11= 30
X= 30-11
X= 19
Sendo S={19, 11} o número de coelhos neste quintal é 11 e de galinhas é 19.
Espero ter ajudado !
Usuário anônimo:
Por favor, dê como melhor resposta
Perguntas interessantes
Inglês,
10 meses atrás
Biologia,
10 meses atrás
Matemática,
10 meses atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Geografia,
1 ano atrás