Matemática, perguntado por arturdiasromao135, 1 ano atrás

Em um polígono de n
lados, a razão entre o número de
diagonais e o número de diagonais que
partem de um vértice vale 7 . Então
n é igual a ?

Soluções para a tarefa

Respondido por rsoto2007
3

Resposta:

Explicação passo-a-passo:

pela fórmula temos

d=n(n-3)/2 onde d= número de diagonais

v=(n-3) onde v=número de diagonais que partem de um vertice

d/v=n(n-3)/2/(n-3)=n(n-3)/2(n-3)=n/2=7

n=2.7=14

Respondido por Irreconhecivel
3

Resposta:

n=14

Explicação passo-a-passo:

7 é igual ao numero de diagonais dividido pelo numero de diagonais que partem de um vertice.

numero de diagonais = n(n-3)/2

diagnais q partem de um vertice = n(n-3)

a razao da divisao de ambod e 7 entao

7= (n(n-3)/2)/n-3

divisao de divisao basta multiplicar pelo inverso

7=n(n-3)/2 × 1/n-3

7= n(n-3)/2(n-3)

corta o (n-3)

7 = n/2

7×2 = n

n= 14

Perguntas interessantes