Matemática, perguntado por mmedilson, 1 ano atrás

EDO - Resolva o problema de valor inicial:

\frac{dy}{dx}=\frac{x}{(x^2+9)^{\frac{1}{2}}}, y(4)=2.

Se puder passar o passo a passo, fico grato.

Soluções para a tarefa

Respondido por Usuário anônimo
1
Boa noite Mmedilson!

Solução!

Vamos aplicar a integral para resolver o P. V. I.

\displaystyle\int \frac{x}{( x^{2} +9)^{ \frac{1}{2} } } \\\\\\\
Fazendo~~por ~~substituic\~ao!\\\\\\\\
u= x^{2} +9\\\\\
du=2xdx\\\\\\
 \boxed{\frac{du}{2}=xdx}


\displaystyle\int \frac{1}{2  \sqrt{u} } } \\\\\\\

 \dfrac{1}{2} \displaystyle\int \frac{1}{\sqrt{u} } } \\\\\\\
\dfrac{1}{2} \displaystyle\int \frac{1}{\sqrt{x} } } \\\\\\\

\dfrac{1}{2} \displaystyle\int \frac{1}{(x)^{ \frac{1}{2} }  } } \\\\\\\

\dfrac{1}{2} \displaystyle\int (x)^{ -\frac{1}{2} }  } } \\\\\\\

\dfrac{1}{2} \displaystyle\int \frac{ (x)^{ -\frac{1}{2}+1 } }{- \frac{1}{2} +1}  } } \\\\\\\

\dfrac{1}{2} \displaystyle\int \frac{ (x)^{\frac{1}{2} } }{ \frac{1}{2}}


\displaystyl (x)^{\frac{1}{2}}\\\\\\
x=u\\\\\\



 \displaystyle\int \frac{x}{( x^{2} +9)^{ \frac{1}{2} } }=\sqrt{ x^{2} +9}+c

Agora vamos igualar a função integrada a esses valores,para determinarmos o valor da constante.


y(4)=2


y=\sqrt{ x^{2} +9}+c\\\\\\\
2=\sqrt{ (4)^{2} +9}+c\\\\\\
2=\sqrt{ 25}+c\\\\\\
2=5+c\\\\\\
2-5=c\\\\\
-3=c\\\\\\
\boxed{c=-3}

y=\sqrt{ x^{2} +9}+c\\\\\\ y=
\sqrt{ x^{2} +9}-3\\\\\\\\

\boxed{Resposta:~~y=\sqrt{ x^{2} +9}-3}

Boa noite!
Bons estudos!





mmedilson: Muito obrigado. Ajudou d+++
Usuário anônimo: Dê nada!
Perguntas interessantes