EDO
Obtenha a solução da equação deferencial y' = (2x-1)^5 e, então, obtenha uma solução particular para a condição inicial y (1) = 2
Preciso do passo a passo
Soluções para a tarefa
Respondido por
21
Olá
Equação Diferencial Ordinária por Separação de Variáveis.
![\displaystyle\mathsf{y'=(2x-1)^5} \displaystyle\mathsf{y'=(2x-1)^5}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7By%27%3D%282x-1%29%5E5%7D)
Substitua y' por dy/dx
![\displaystyle \mathsf{ \frac{dy}{dx}~=~ (2x-1)^5} \displaystyle \mathsf{ \frac{dy}{dx}~=~ (2x-1)^5}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Cfrac%7Bdy%7D%7Bdx%7D%7E%3D%7E+%282x-1%29%5E5%7D)
Passe o 'dx' para o outro lado
![\displaystyle \mathsf{ dy~=~ (2x-1)^5dx} \displaystyle \mathsf{ dy~=~ (2x-1)^5dx}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+dy%7E%3D%7E+%282x-1%29%5E5dx%7D)
Integre dos dois lados
![\displaystyle \mathsf{ \int dy~=~ \int (2x-1)^5dx} \displaystyle \mathsf{ \int dy~=~ \int (2x-1)^5dx}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Cint+dy%7E%3D%7E+%5Cint+%282x-1%29%5E5dx%7D)
Resolvendo a 2ª integral separadamente.
pelo método da substituição 'udu'
![\displaystyle\mathsf{\int (2x-1)^5dx}\\\\\\\mathsf{u=2x-1}\\\mathsf{du=2dx}\\\\\mathsf{dx= \frac{1}{2}du }\\\\\\\mathsf{\int u^5 \frac{1}{2}du }\\\\\\\mathsf{ \frac{1}{2} \int u^5du~=~ \frac{1}{2}\cdot \frac{u^{5+1}}{5+1}+C }\\\\\\\mathsf{= \frac{1}{2}\cdot \frac{u^6}{6}+C }\\\\\\\mathsf{= \frac{(2x-1)^6}{12}+C } \displaystyle\mathsf{\int (2x-1)^5dx}\\\\\\\mathsf{u=2x-1}\\\mathsf{du=2dx}\\\\\mathsf{dx= \frac{1}{2}du }\\\\\\\mathsf{\int u^5 \frac{1}{2}du }\\\\\\\mathsf{ \frac{1}{2} \int u^5du~=~ \frac{1}{2}\cdot \frac{u^{5+1}}{5+1}+C }\\\\\\\mathsf{= \frac{1}{2}\cdot \frac{u^6}{6}+C }\\\\\\\mathsf{= \frac{(2x-1)^6}{12}+C }](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7B%5Cint+%282x-1%29%5E5dx%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bu%3D2x-1%7D%5C%5C%5Cmathsf%7Bdu%3D2dx%7D%5C%5C%5C%5C%5Cmathsf%7Bdx%3D+%5Cfrac%7B1%7D%7B2%7Ddu+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cint+u%5E5+%5Cfrac%7B1%7D%7B2%7Ddu+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cfrac%7B1%7D%7B2%7D+%5Cint+u%5E5du%7E%3D%7E+%5Cfrac%7B1%7D%7B2%7D%5Ccdot++%5Cfrac%7Bu%5E%7B5%2B1%7D%7D%7B5%2B1%7D%2BC++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%3D+%5Cfrac%7B1%7D%7B2%7D%5Ccdot++%5Cfrac%7Bu%5E6%7D%7B6%7D%2BC++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%3D+%5Cfrac%7B%282x-1%29%5E6%7D%7B12%7D%2BC+%7D)
Voltando na EDO
![\displaystyle \mathsf{ \int dy~=~ \int (2x-1)^5dx}\\\\\\\\\mathsf{y~=~ \frac{(2x-1)^6}{12}+C } \displaystyle \mathsf{ \int dy~=~ \int (2x-1)^5dx}\\\\\\\\\mathsf{y~=~ \frac{(2x-1)^6}{12}+C }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Cint+dy%7E%3D%7E+%5Cint+%282x-1%29%5E5dx%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%7E%3D%7E+%5Cfrac%7B%282x-1%29%5E6%7D%7B12%7D%2BC+%7D)
Substituindo o valor inicial para encontrar o valor do 'C'
y(1) = 2
y = 2
x = 1
![\displaystyle\mathsf{2~=~ \frac{(2(1)-1)^6}{12}+C }\\\\\\\mathsf{2~=~ \frac{1}{12}+C }\\\\\\\mathsf{C~=~ \frac{23}{12} } \displaystyle\mathsf{2~=~ \frac{(2(1)-1)^6}{12}+C }\\\\\\\mathsf{2~=~ \frac{1}{12}+C }\\\\\\\mathsf{C~=~ \frac{23}{12} }](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7B2%7E%3D%7E+%5Cfrac%7B%282%281%29-1%29%5E6%7D%7B12%7D%2BC+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B2%7E%3D%7E+%5Cfrac%7B1%7D%7B12%7D%2BC+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BC%7E%3D%7E+%5Cfrac%7B23%7D%7B12%7D+%7D)
Portanto a solução da EDO é
![\displaystyle\boxed{\mathsf{y~=~ \frac{(2x-1)^6}{12}+ \frac{23}{12} }} \displaystyle\boxed{\mathsf{y~=~ \frac{(2x-1)^6}{12}+ \frac{23}{12} }}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cboxed%7B%5Cmathsf%7By%7E%3D%7E+%5Cfrac%7B%282x-1%29%5E6%7D%7B12%7D%2B+%5Cfrac%7B23%7D%7B12%7D++%7D%7D)
Equação Diferencial Ordinária por Separação de Variáveis.
Substitua y' por dy/dx
Passe o 'dx' para o outro lado
Integre dos dois lados
Resolvendo a 2ª integral separadamente.
pelo método da substituição 'udu'
Voltando na EDO
Substituindo o valor inicial para encontrar o valor do 'C'
y(1) = 2
y = 2
x = 1
Portanto a solução da EDO é
hytalobragaoz404p:
Muito obrigado
Perguntas interessantes
Matemática,
11 meses atrás
Geografia,
11 meses atrás
Português,
11 meses atrás
Química,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Geografia,
1 ano atrás