dois cubos de mesma densidade e tamanhos diferentes repousam sobre uma mesa horizontal e mantém contato entre si por uma de suas faces.A aresta de um dos cubos mede o dobro da aresta do outro.Em um dado instante,uma força constante F, horizontal, é aplicada sobre o cubo menor que,por sua vez, empurra o maior, conforme a figura a seguir (na foto )
Despreze tds os atritos.A razão entre o módulo e F e o módulo da força de contato entre os cubos é:
a)8
b)2
c)1/8
d)9/8
Anexos:
Soluções para a tarefa
Respondido por
65
M=(m1 + m2)=(m1 + 8m1)=9m1,
F=Ma --- F = 9m1.a
A Fr doo bloco 2 é a força de contato aplicada pelo bloco 1 ---- N=m2a --- N=8m1a
Dividindo - F/N = 9m1/8m1 --- F/N = 9/8.
F=Ma --- F = 9m1.a
A Fr doo bloco 2 é a força de contato aplicada pelo bloco 1 ---- N=m2a --- N=8m1a
Dividindo - F/N = 9m1/8m1 --- F/N = 9/8.
mafe1823:
vlw muito obrigada
Respondido por
53
F/F' = 9/8
Os dois cubos possuem a mesma densidade e sabemos que a densidade é calculada da seguinte maneira -
d = m/V
O volume de um cubo equivale a medida de sua aresta elevada ao cubo -
m1/a³ = m2/(2a)³
m1/a³ = m2/8a³
m1 = m2/8
8m1 = m2
De acordo com a Segunda Lei de Newton,
Fr = m.a
Força resultante sobre o sistema -
F = (m1 + m2)a
F =( m1 + 8m1)a
F = 9m1. a
Isolando o bloco 2-
F' = m2.a
F' = 8m1.a
F/F' = 9m1.a/8m1.a
F/F' = 9/8
Perguntas interessantes
Ed. Física,
10 meses atrás
Português,
10 meses atrás
Geografia,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás