dividir o polinômio D(x)=2x⁴-3x³-2x-1pelo polinômio kx=x²-x-2
Soluções para a tarefa
Explicação passo-a-passo:
2x⁴-3x³+0x²-2x-1÷ x²-x-2 =2x²-1x+3
-2x⁴+2x³+4x²
___| -x³+4x²-2x-1
___| +x³-x²-2x
_______ 3x²-4x-1
_______-3x²+3x+6
____________| -x+5
Quociente : 2x²-1x+3
Resto : -x+5
Resposta:
Explicação passo-a-passo:
2X^4 -3X³-2X-1 /X²-X-2
= DIVIDIMOS SEMPRE O PRIMEIRO ELEMENTO PELO PRIMIEIRO ASSIM TEREMOS:
2X^4 -3X³-2X-1 / X²-X-2
= 2X². DAÍ MULTIPLICAMOS O RESULTADO PELOS ELEMENTOS DO DENOMINADOR, OU SEJA, 2X² *X², DEPOIS POR -X E DEPOIS POR -X. E LEVAMOS ESSE RESULTADO PARA O NUMERADOR COM O SINAL INVERSO PRA SOMAR, OBTER O UM NOVO RESULTADO E REFAZER O PROCESSO ATÉ QUE O NUMERADOR NÃO POSSA MAIS SER DIVIDIDO PELO PRIMEIRO NÚMERO DO DENOMINADOR.
2X^4 - 3X³- 2X-1/ X²-X-2
* 2X²
____________
2X^4 -2X³-4X². AGORA SOMAMOS AO NUMERADOR COM O SINAL INVERTIDO.
2X^4 -3X³ -2X-1
-2X^4 +2X³ +4X² -2X -1
= -X³+ 4X²-2X-1 / X²-X-2. DO MESMO MODO TEMOS COM RESULTADO:
-X *
-X³+X²+2X
-X³+4X²-2X-1
+X³-X²-2X -1
3X² -4X -1. NOVAMENTE: / X²-X-2.
= 3*
-3X²-4X-1 = 3X²-3X-6
3X² +3X +6
(- X +5) RESTO.
LOGO:
2X^4 -3X³-2X-1/X²-X-2 = (X²-X-2)*(2X²-X+3) +(5-X). UM ABRAÇO!