distribua 580 laranjas em duas caixas de modo que uma delas contenha 140 laranjas e menos do que a outra
Soluções para a tarefa
Respondido por
6
forma-se uma equação a partir desta frase: 580 = x + y, onde y = x - 140. substituindo y na equação temos;
580 = x + x - 140
580 = 2x - 140
440 = 2x
440/2 = x
220 = x
se uma caixa tem que ter 140 laranjas a mais que a outra e uma delas contem 220 laranjas a outra caixa deverá ter 220 + 140 = 360 laranjas
espero ter ajudado, beijos
580 = x + x - 140
580 = 2x - 140
440 = 2x
440/2 = x
220 = x
se uma caixa tem que ter 140 laranjas a mais que a outra e uma delas contem 220 laranjas a outra caixa deverá ter 220 + 140 = 360 laranjas
espero ter ajudado, beijos
Respondido por
0
x+(x-140)=580
Passo 1: Simplifique ambos os lados da equação.
x+x−140=580
x+x+−140=580
(x+x)+(−140)=580(combinar termos semelhantes)
2x+−140=580
2x−140=580
Etapa 2: adicione 140 a ambos os lados.
2x−140+140=580+140
2x=720
Passo 3: Divida ambos os lados por 2.
2x/2=720/2
x=360✓
x-140
360-140=220✓
R=[ 360, 220 ]
Perguntas interessantes
Matemática,
9 meses atrás
Informática,
9 meses atrás
Ed. Física,
9 meses atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás