determine três números reais em pg de modo que sua soma seja 39 e seu produto seja 729.
Soluções para a tarefa
Respondido por
1
Sejam os termos "x" "y" e "z"
x+y+z = 39
xyz = 729 RELAÇÃO I
considerando que em qualquer PG um termo é média proporcional entre o antecedente e consequente;
y² = xz
substituindo na RELAÇÃO I
y³ = 729 ⇒ y³ = 3^6 ⇒ y = 3² ⇒ y = 9
x + z = 39 - 9 ⇒ x + z = 30
x(z) = 729/9 ⇒ x(z) = 81
procurando 2 nº(s) cuja soma seja 30 e cujo produto seja 81 concluímos serem 27 e 3
então x = 3 y = 9 e z = 27
Resposta: os nº(s) são 3 9 e 27
x+y+z = 39
xyz = 729 RELAÇÃO I
considerando que em qualquer PG um termo é média proporcional entre o antecedente e consequente;
y² = xz
substituindo na RELAÇÃO I
y³ = 729 ⇒ y³ = 3^6 ⇒ y = 3² ⇒ y = 9
x + z = 39 - 9 ⇒ x + z = 30
x(z) = 729/9 ⇒ x(z) = 81
procurando 2 nº(s) cuja soma seja 30 e cujo produto seja 81 concluímos serem 27 e 3
então x = 3 y = 9 e z = 27
Resposta: os nº(s) são 3 9 e 27
Perguntas interessantes
Inglês,
10 meses atrás
Matemática,
10 meses atrás
História,
10 meses atrás
Matemática,
1 ano atrás
Filosofia,
1 ano atrás
Matemática,
1 ano atrás