Matemática, perguntado por pequenamente, 10 meses atrás

Determine , se existir, a inversa das matrizes:

Anexos:

Soluções para a tarefa

Respondido por biagabylima
0

Resposta:

Temos o seguinte sobre matriz inversa:

\begin{gathered}[\begin{array}{ccc}1&2\\1&0\\\end{array}] \cdot [\begin{array}{ccc}a&b\\c&d\\\end{array}] = [\begin{array}{ccc}1&0\\0&1\\\end{array}] \\ \\ \\ \{ {{1a+2c=1} \atop {1a +0c=0}} . \to \{ {{a+2c=1} \atop {a =0}} . \\ \\ \{ {{1b + 2d=0} \atop {1b + 0d=1}} . \to \{ {{b + 2d=0} \atop {b =1}} .\end{gathered}

[

1

1

2

0

]⋅[

a

c

b

d

]=[

1

0

0

1

]

{

1a+0c=0

1a+2c=1

.→{

a=0

a+2c=1

.

{

1b+0d=1

1b+2d=0

.→{

b=1

b+2d=0

.

Logo temos:

\begin{gathered}a + 2c = 1 \to 0 + 2c = 1 \to c = \frac{1}{2} \\ \\ b + 2d = 0 \to 1 + 2d = 0 \to d = - \frac{1}{2}\end{gathered}

a+2c=1→0+2c=1→c=

2

1

b+2d=0→1+2d=0→d=−

2

1

Logo a matriz inversa:

\begin{gathered}[\begin{array}{ccc}a&b\\c&d\\\end{array}] = [\begin{array}{ccc}0&1\\ \frac{1}{2} &- \frac{1}{2} \\\end{array}]\end{gathered}

[

a

c

b

d

]=[

0

2

1

1

2

1

]

Perguntas interessantes