Determine, se existem, as raízes reais das funções quadráticas dadas pelas leis de correspondência a seguir:
A) f(x)= X² -7X+12
B) f(x)= 2X² -5X -10
C) f(x)= 2X² -2X-4
Soluções para a tarefa
Respondido por
1
a)
f(x)= X² -7X+12
0 = x² - 7x + 12
x² - 7x + 12 = 0
a = 1; b = - 7; c = 12
Δ = b² - 4ac
Δ = (-7)² - 4.1.12
Δ = 49 - 48
Δ = 1
x = - b +/- √Δ = - ( - 7) +/- √1
--------------- ----------------------
2a 2.1
x' = 7 + 1
--------- = 8/2 = 4
2
x" = 7 - 1
------- = 6/2 = 3
2
****************************
B)
f(x)= 2X² -5X -10
0 = 2x² - 5x - 10
2x² - 5x - 10 = 0
a = 2; b = - 5; c = - 10
Δ = b² - 4ac
Δ = (-5)² - 4.2.(-10)
Δ = 25 - 8.(-10)
Δ = 25 + 80
Δ = 105
x = - b +/- √Δ = - ( - 5) +/- √105
---------------- -----------------------
2a 2.2
x' = 5 + √105
----------------
4
x" = 5 - √105
--------------
4
************************************
C) f(x)= 2X² -2X-4
0 = 2x² - 2x - 4
2x² - 2x - 4 = 0 (:2)
x² - x - 2 = 0
a = 1; b = - 1; c = - 2
Δ = b² - 4ac
Δ = (-1)² - 4.1.(-2)
Δ = 1 + 8
Δ = 9
x = - b +/- √Δ = - (-1) +/- √9
----------------- ------------------
2a 2.1
x' = 1 + 3
---------- = 4/2 = 2
2
x" = 1 - 3
------- = - 2/2 = - 1
2
f(x)= X² -7X+12
0 = x² - 7x + 12
x² - 7x + 12 = 0
a = 1; b = - 7; c = 12
Δ = b² - 4ac
Δ = (-7)² - 4.1.12
Δ = 49 - 48
Δ = 1
x = - b +/- √Δ = - ( - 7) +/- √1
--------------- ----------------------
2a 2.1
x' = 7 + 1
--------- = 8/2 = 4
2
x" = 7 - 1
------- = 6/2 = 3
2
****************************
B)
f(x)= 2X² -5X -10
0 = 2x² - 5x - 10
2x² - 5x - 10 = 0
a = 2; b = - 5; c = - 10
Δ = b² - 4ac
Δ = (-5)² - 4.2.(-10)
Δ = 25 - 8.(-10)
Δ = 25 + 80
Δ = 105
x = - b +/- √Δ = - ( - 5) +/- √105
---------------- -----------------------
2a 2.2
x' = 5 + √105
----------------
4
x" = 5 - √105
--------------
4
************************************
C) f(x)= 2X² -2X-4
0 = 2x² - 2x - 4
2x² - 2x - 4 = 0 (:2)
x² - x - 2 = 0
a = 1; b = - 1; c = - 2
Δ = b² - 4ac
Δ = (-1)² - 4.1.(-2)
Δ = 1 + 8
Δ = 9
x = - b +/- √Δ = - (-1) +/- √9
----------------- ------------------
2a 2.1
x' = 1 + 3
---------- = 4/2 = 2
2
x" = 1 - 3
------- = - 2/2 = - 1
2
Perguntas interessantes