Matemática, perguntado por laurensilva32, 10 meses atrás

Determine os valores do coeficiente A B e C nas equações do segundo grau abaixo classifique-as em completa ou incompleta e Encontre suas raízes observando exemplos anteriores A)X elevado a 2 menos 10x + 21 = 0
B)-x^2+14x-49=0
C)x^2-2x+5=0
D) x^2+x-12=0
E)x^2+8x=0
F)x^2-81=0
G)3x^2-15x=0
H)4x^2-49=0
I)x^2-2x+10=0
J)2x^2-x-10=0

Soluções para a tarefa

Respondido por ladymarychan60
55

Resposta:

Para responder precisamos saber como determinar os valores dos coeficientes, o que faz as equações do 2º grau serem completas ou incompletas e como encontrar suas raízes.

O que são os coeficientes da equação do 2º grau?

São os números que acompanham os termos x², x e que aparecem sem a variável ao lado.

a → número que acompanha o x²

b → número que acompanha o x

c → número que vem sozinho.

Quando algum destes termos não aparece na equação, isso significa que eles valem zero. Quando os termos aparecem sem nenhum número ao lado, o coeficiente é 1. ou -1, dependendo do sinal que estiver antes deles.

O que são equações completas e incompletas?

Elas são completas quando temos todos os coeficientes b e c diferentes de zero. E incompletas quando b, c ou ambos são iguais a zero.

Como encontrar as raízes da equação?

As equações incompletas podem ser resolvidas por fatoração e para as completas utilizamos a fórmula de Bhaskara que consiste em:

Chamamos o termo dentro da raiz de discriminante ou delta.

Assim, a fórmula fica:

Vamos então ao exercício:

a) x² - 10x + 21

→ a = 1  |  b = -10  |  c = 21

→ Equação Completa

→ Raízes: x₁ = 7 e x₂ = 3

b) -x² + 14x - 49

→ a = -1  |  b = 14  |  c = -49

→ Equação Completa

→ Raízes: x₁ = 7 e x₂ = 7

Chamamos de raiz dupla, quando ocorre das duas raízes encontradas serem iguais. Isso significa que a equação tem 1 raiz.

c) x² - 2x + 5

→ a = 1  |  b = -2  |  c = 5

→ Equação Completa

→ Raízes: não possui raízes

Como não existe raiz quadrada de -16 dentro do conjunto dos reais, logo não há como encontrar as raízes.

d) x² + x - 12

→ a = 1  |  b = 1  |  c = -12

→ Equação Completa

→ Raízes: x₁ = 3 e x₂ = -4

e) x² + 8x

→ a = 1  |  b = 8  |  c = 0

→ Equação Incompleta

→ Raízes: x₁ = 0 e x₂ = -8

Cálculo das raízes:

x² + 8x = 0 → x(x + 8) = 0

x = 0

x + 8 = 0 → x = -8

f) x² - 81

→ a = 1  |  b = 0  |  c = -81

→ Equação Incompleta

→ Raízes: x₁ = 9 e x₂ = -9

Cálculo das raízes:

x² - 81 = 0

x² = 81

x = √81

x = 9 ou x = -9

g) 3x² - 15x

→ a = 3  |  b = -15  |  c = 0

→ Equação Incompleta

→ Raízes: x₁ = 0 e x₂ = 5

Cálculo das raízes:

3x² - 15x = 0 → 3x(x - 5) = 0

3x = 0 → x = 0

x - 5 = 0 → x = 5

h) 4x² - 49

→ a = 4  |  b = 0  |  c = -49

→ Equação Incompleta

→ Raízes: x₁ = 7/2 e x₂ = -7/2

Cálculo das raízes:

4x² - 49 = 0

4x² = 49

x² = 49/4

x = √49/√4

x = 7/2 ou x = -7/2

i) x² - 2x + 1

→ a = 1  |  b = -2  |  c = 1

→ Equação Completa

→ Raízes: x₁ = 1 e x₂ = 1

j) 2x² - x - 10

→ a = 2 |  b = -1  |  c = -10

→ Equação Completa

→ Raízes: x₁ = 5/2 e x₂ = -2

Eu tirei daqui:

https://brainly.com.br/tarefa/30360954

Perguntas interessantes