determine os cinco primeiros termos de uma PG de razão 4 e primeiro termo igual a 2
Soluções para a tarefa
Resposta:
PG ( 2,8,32,128)
Explicação passo-a-passo:
a1 = 2
q = 4
a2 = 2.4
a2 = 8
a3 = 8.4
a3 = 32
a4 = 32.4
a4 = 128
Os 4 primeiros termos da P.G. de razão 4 e o primeiro termo igual a 2 são 2, 8, 32 e 128.
O termo geral de uma progressão geométrica é definido por aₙ = a₁.qⁿ⁻¹, sendo:
a₁ = primeiro termo
n = quantidade de termos
q = razão.
De acordo com o enunciado, a razão da progressão geométrica é igual a 4. Então, devemos considerar que q = 4.
Além disso, o primeiro termo é igual a 2. Logo, a₁ = 2.
Com isso, o termo geral da progressão geométrica é igual a aₙ = 2.4ⁿ⁻¹.
Para calcularmos os quatro primeiros termos da progressão geométrica, devemos considerar que n = 1, 2, 3, 4.
Se n = 1, então a₁ = 2.4¹⁻¹ = 2;
Se n = 2, então a₂ = 2.4²⁻¹ = 8;
Se n = 3, então a₃ = 2.4³⁻¹ = 32;
Se n = 4, então a₄ = 2.4⁴⁻¹ = 128.
Portanto, os quatro primeiros termos são (2, 8, 32, 128).