Determine o vetor unitário ortogonal aos vetores V1= (-1,-1,0) e V2= (0,-1,-1)
Soluções para a tarefa
Respondido por
32
Primeiro, devemos achar um vetor ortogonal aos vetores V₁ e V₂
É natural acharmos o produto vetorial de V₁ e V₂:
![\vec{v}=\vec{V_{1}}~x~\vec{V_{2}}=\left|\begin{array}{ccc}\vec{I}&\vec{J}&\vec{K}\\-1&-1&0\\0&-1&-1\end{array}\right|\\\\\\\vec{I}(-1)(-1)+(-1)(-1)\vec{K}+\vec{J}(0)(0)-\vec{K}(-1)(0)-\vec{J}(-1)(-1)-0(-1)\vec{I}\\\\\\\vec{v}=\vec{I}+\vec{K}+0+\vec{0}-\vec{J}-0\\\\\\\vec{v}=\vec{I}-\vec{J}+\vec{K}\\\\\\v=(1,~0,~0)-(0,~1,~0)+(0,~0,~1)\\\\\\\boxed{\boxed{\vec{v}=1,-1,~1}} \vec{v}=\vec{V_{1}}~x~\vec{V_{2}}=\left|\begin{array}{ccc}\vec{I}&\vec{J}&\vec{K}\\-1&-1&0\\0&-1&-1\end{array}\right|\\\\\\\vec{I}(-1)(-1)+(-1)(-1)\vec{K}+\vec{J}(0)(0)-\vec{K}(-1)(0)-\vec{J}(-1)(-1)-0(-1)\vec{I}\\\\\\\vec{v}=\vec{I}+\vec{K}+0+\vec{0}-\vec{J}-0\\\\\\\vec{v}=\vec{I}-\vec{J}+\vec{K}\\\\\\v=(1,~0,~0)-(0,~1,~0)+(0,~0,~1)\\\\\\\boxed{\boxed{\vec{v}=1,-1,~1}}](https://tex.z-dn.net/?f=%5Cvec%7Bv%7D%3D%5Cvec%7BV_%7B1%7D%7D%7Ex%7E%5Cvec%7BV_%7B2%7D%7D%3D%5Cleft%7C%5Cbegin%7Barray%7D%7Bccc%7D%5Cvec%7BI%7D%26amp%3B%5Cvec%7BJ%7D%26amp%3B%5Cvec%7BK%7D%5C%5C-1%26amp%3B-1%26amp%3B0%5C%5C0%26amp%3B-1%26amp%3B-1%5Cend%7Barray%7D%5Cright%7C%5C%5C%5C%5C%5C%5C%5Cvec%7BI%7D%28-1%29%28-1%29%2B%28-1%29%28-1%29%5Cvec%7BK%7D%2B%5Cvec%7BJ%7D%280%29%280%29-%5Cvec%7BK%7D%28-1%29%280%29-%5Cvec%7BJ%7D%28-1%29%28-1%29-0%28-1%29%5Cvec%7BI%7D%5C%5C%5C%5C%5C%5C%5Cvec%7Bv%7D%3D%5Cvec%7BI%7D%2B%5Cvec%7BK%7D%2B0%2B%5Cvec%7B0%7D-%5Cvec%7BJ%7D-0%5C%5C%5C%5C%5C%5C%5Cvec%7Bv%7D%3D%5Cvec%7BI%7D-%5Cvec%7BJ%7D%2B%5Cvec%7BK%7D%5C%5C%5C%5C%5C%5Cv%3D%281%2C%7E0%2C%7E0%29-%280%2C%7E1%2C%7E0%29%2B%280%2C%7E0%2C%7E1%29%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%5Cvec%7Bv%7D%3D1%2C-1%2C%7E1%7D%7D)
_____________________
Qualquer vetor múltiplo do produto vetorial V₁xV₂ será ortogonal aos vetores V₁ e V₂
Então, queremos achar um vetor múltiplo de v que possui módulo 1
Sendo esse vetor w, temos que w = (x, y, z), onde:
![||\vec{w}||=1~~~\therefore~~~\sqrt{x^{2}+y^{2}+z^{2}}=1~~~\therefore~~~\boxed{\boxed{x^{2}+y^{2}+z^{2}=1}} ||\vec{w}||=1~~~\therefore~~~\sqrt{x^{2}+y^{2}+z^{2}}=1~~~\therefore~~~\boxed{\boxed{x^{2}+y^{2}+z^{2}=1}}](https://tex.z-dn.net/?f=%7C%7C%5Cvec%7Bw%7D%7C%7C%3D1%7E%7E%7E%5Ctherefore%7E%7E%7E%5Csqrt%7Bx%5E%7B2%7D%2By%5E%7B2%7D%2Bz%5E%7B2%7D%7D%3D1%7E%7E%7E%5Ctherefore%7E%7E%7E%5Cboxed%7B%5Cboxed%7Bx%5E%7B2%7D%2By%5E%7B2%7D%2Bz%5E%7B2%7D%3D1%7D%7D)
Sendo w = αv (múltiplo de v):
![\vec{w}=\alpha\cdot\vec{v}\\\vec{w}=\alpha\cdot(1,-1,~1)\\\vec{w}=(\alpha,-\alpha,~\alpha) \vec{w}=\alpha\cdot\vec{v}\\\vec{w}=\alpha\cdot(1,-1,~1)\\\vec{w}=(\alpha,-\alpha,~\alpha)](https://tex.z-dn.net/?f=%5Cvec%7Bw%7D%3D%5Calpha%5Ccdot%5Cvec%7Bv%7D%5C%5C%5Cvec%7Bw%7D%3D%5Calpha%5Ccdot%281%2C-1%2C%7E1%29%5C%5C%5Cvec%7Bw%7D%3D%28%5Calpha%2C-%5Calpha%2C%7E%5Calpha%29)
Igualando o módulo de w a 1:
![||\vec{w}||=1\\||\vec{w}||^{2}=1^{2}\\||\vec{w}||=1\\x^{2}+y^{2}+z^{2}=1\\\alpha^{2}+(-\alpha)^{2}+\alpha^{2}=1\\2\alpha^{2}+\alpha^{2}=1\\3\alpha^{2}=1\\\alpha^{2}=1/3\\\alpha=\pm\sqrt{1/3)}\\\alpha=\pm\sqrt{3}/3 ||\vec{w}||=1\\||\vec{w}||^{2}=1^{2}\\||\vec{w}||=1\\x^{2}+y^{2}+z^{2}=1\\\alpha^{2}+(-\alpha)^{2}+\alpha^{2}=1\\2\alpha^{2}+\alpha^{2}=1\\3\alpha^{2}=1\\\alpha^{2}=1/3\\\alpha=\pm\sqrt{1/3)}\\\alpha=\pm\sqrt{3}/3](https://tex.z-dn.net/?f=%7C%7C%5Cvec%7Bw%7D%7C%7C%3D1%5C%5C%7C%7C%5Cvec%7Bw%7D%7C%7C%5E%7B2%7D%3D1%5E%7B2%7D%5C%5C%7C%7C%5Cvec%7Bw%7D%7C%7C%3D1%5C%5Cx%5E%7B2%7D%2By%5E%7B2%7D%2Bz%5E%7B2%7D%3D1%5C%5C%5Calpha%5E%7B2%7D%2B%28-%5Calpha%29%5E%7B2%7D%2B%5Calpha%5E%7B2%7D%3D1%5C%5C2%5Calpha%5E%7B2%7D%2B%5Calpha%5E%7B2%7D%3D1%5C%5C3%5Calpha%5E%7B2%7D%3D1%5C%5C%5Calpha%5E%7B2%7D%3D1%2F3%5C%5C%5Calpha%3D%5Cpm%5Csqrt%7B1%2F3%29%7D%5C%5C%5Calpha%3D%5Cpm%5Csqrt%7B3%7D%2F3)
Podemos escolher um valor pra alfa. Vou escolher o positivo:
![\boxed{\boxed{\alpha=\dfrac{\sqrt{3}}{3}}} \boxed{\boxed{\alpha=\dfrac{\sqrt{3}}{3}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Calpha%3D%5Cdfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%7D%7D)
Então w será:
![\vec{w}=(\alpha,-\alpha,~\alpha)\\\\\\\boxed{\boxed{\vec{w}=\left(\dfrac{\sqrt{3}}{3},-\dfrac{\sqrt{3}}{3},~\dfrac{\sqrt{3}}{3}\right)}} \vec{w}=(\alpha,-\alpha,~\alpha)\\\\\\\boxed{\boxed{\vec{w}=\left(\dfrac{\sqrt{3}}{3},-\dfrac{\sqrt{3}}{3},~\dfrac{\sqrt{3}}{3}\right)}}](https://tex.z-dn.net/?f=%5Cvec%7Bw%7D%3D%28%5Calpha%2C-%5Calpha%2C%7E%5Calpha%29%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%5Cvec%7Bw%7D%3D%5Cleft%28%5Cdfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%2C-%5Cdfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%2C%7E%5Cdfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%5Cright%29%7D%7D)
É natural acharmos o produto vetorial de V₁ e V₂:
_____________________
Qualquer vetor múltiplo do produto vetorial V₁xV₂ será ortogonal aos vetores V₁ e V₂
Então, queremos achar um vetor múltiplo de v que possui módulo 1
Sendo esse vetor w, temos que w = (x, y, z), onde:
Sendo w = αv (múltiplo de v):
Igualando o módulo de w a 1:
Podemos escolher um valor pra alfa. Vou escolher o positivo:
Então w será:
Perguntas interessantes
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Ed. Moral,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Pedagogia,
1 ano atrás