Matemática, perguntado por rafaelcsm1, 1 ano atrás

determine o valor de y=
 \sqrt{0.111...}  +  \frac{14}{0.777...}

Soluções para a tarefa

Respondido por danielfalves
2
 \sqrt{0,1111...} = \sqrt{x} \\\\x=0,1111...\\10x=1,111...\\10x=1+0,1111...\\10x=1+x\\9x=1\\\\x= \dfrac{1}{9}\\\\ \sqrt{0,1111...}  = \sqrt{ \dfrac{1}{9} }= \dfrac{1}{3}

 \dfrac{14}{0,777...}= \dfrac{14}{a}\\\\\\a=0,777...\\10a=7,777...\\10a=7+0,777...\\10a=7+a\\9a=7\\\\a= \dfrac{7}{9}\\\\\\ \dfrac{14}{0,777...} = \frac{14}{ \dfrac{7}{9} }\\\\\\ \dfrac{14}{0,777...}=14\cdot \dfrac{9}{7}\\\\\\ \dfrac{14}{0,777...}=18

 \sqrt{0,1111...}+ \dfrac{14}{0,777...}= \dfrac{1}{3}+18\\\\\\ \sqrt{0,1111...}+ \dfrac{14}{0,777...}=  \dfrac{1+54}{3}\\\\\\\boxed{y= \sqrt{0,1111...}+ \dfrac{14}{0,777...}=  \frac{55}{3}}

rafaelcsm1: vlw
danielfalves: tmj!!
Perguntas interessantes