Determine o conjunto verdade das seguintes equações exponenciais:
A-) 3x+2 +3x+1= 9
B-) 7x= 343
C-) 2x(x-2) = 2
Soluções para a tarefa
Respondido por
1
a) 6X + 3 = 9 --> 6X = 9 - 3 --> 6X = 6 --> X = 1 --> V = Conjunto com o elemento 1 dentro.
b) X = 49 --> V = Conjunto com o elemento 49 dentro
c) 2X^2 - 4X = 2 --> 2X^2 - 4X - 2 = 0 (aplica a fórmula de báskara considerando a = 2; b = - 4 e c = - 2 e encontra x' e x ''
b) X = 49 --> V = Conjunto com o elemento 49 dentro
c) 2X^2 - 4X = 2 --> 2X^2 - 4X - 2 = 0 (aplica a fórmula de báskara considerando a = 2; b = - 4 e c = - 2 e encontra x' e x ''
Purisiol:
kkkkkkkkkkkkk. Valeu
Respondido por
0
3x + 2 + 3x + 1 = 9
6x + 3 = 9
6x = 9 - 3
6x = 6
x = 6/6
x = 1
===============================
7x = 343
x = 343/7
x = 49
===================================
2x(2x - 2) = 2
4x² - 4x - 2 = 0 :(2)
2x² - 2x - 1 = 0
a = 2 b = - 2 c = - 1
Δ = b² -4.a.c
Δ = (-2)² - 4.2.(-1)
Δ = 4 + 8
Δ = 12
- b (+ ou -) √Δ
x = -----------------------
2.a
- (-2) (+ ou -) √12
x = --------------------------
2. 2
2 (+ ou -) 2√3
x = ---------------------
4
2 + 2√3 2 - 2√3
x' = ----------- x" = ----------
4 4
2(1 + √3 ) 2(1 - √3)
x' = ---------------- x" = -------------
4 4
1 + √3 1 - √3
x' = ------------ x" = ------------
2 2
1 + √3 1 - √3
S = { ----------- , ---------- }
2 2
=====================================================
Estas não são equações exponenciais
6x + 3 = 9
6x = 9 - 3
6x = 6
x = 6/6
x = 1
===============================
7x = 343
x = 343/7
x = 49
===================================
2x(2x - 2) = 2
4x² - 4x - 2 = 0 :(2)
2x² - 2x - 1 = 0
a = 2 b = - 2 c = - 1
Δ = b² -4.a.c
Δ = (-2)² - 4.2.(-1)
Δ = 4 + 8
Δ = 12
- b (+ ou -) √Δ
x = -----------------------
2.a
- (-2) (+ ou -) √12
x = --------------------------
2. 2
2 (+ ou -) 2√3
x = ---------------------
4
2 + 2√3 2 - 2√3
x' = ----------- x" = ----------
4 4
2(1 + √3 ) 2(1 - √3)
x' = ---------------- x" = -------------
4 4
1 + √3 1 - √3
x' = ------------ x" = ------------
2 2
1 + √3 1 - √3
S = { ----------- , ---------- }
2 2
=====================================================
Estas não são equações exponenciais
Perguntas interessantes
Ed. Física,
10 meses atrás
Ed. Física,
10 meses atrás
Matemática,
10 meses atrás
Português,
1 ano atrás