Matemática, perguntado por vitoria2448, 9 meses atrás

Determine, nos dois triângulos a seguir, os valores dos ângulos e .

Anexos:

Soluções para a tarefa

Respondido por elizeugatao
2

Vamos usar trigonometria no triângulo retângulo :

\displaystyle \text{Seno} = \frac{\text{cateto oposto } }{\text{hipotenusa}}

\displaystyle \text{Cosseno} = \frac{\text{cateto adjacente } }{\text{hipotenusa}}

\displaystyle \text{Tangente } = \frac{\text{Seno }}{\text{Cosseno}} \to \text{Tangente } = \frac{\text{cateto oposto }}{\text{cateto adjacente }}

ângulos notáveis :

\displaystyle \boxed{\text{Sen}(30^{\circ}) = \frac{1}{2}} \ \ ; \boxed{\text{Sen}(45^{\circ}) = \frac{\sqrt{2}}{2}} \ \ ; \boxed{\text{Sen}(60^{\circ}) = \frac{\sqrt{3}}{2} }

\displaystyle \boxed{\text{Cos}(30^{\circ}) = \frac{\sqrt{3}}{2}} \ \ ; \boxed{\text{Cos}(45^{\circ}) = \frac{\sqrt{2}}{2}} \ \ ; \boxed{\text{Cos}(60^{\circ}) = \frac{1}{2} }

\displaystyle \boxed{\text{Tg}(30^{\circ}) = \frac{\sqrt{3}}{3}} \ \ ; \boxed{\text{Tg}(45^{\circ}) = 1} \ \ ; \boxed{\text{Tg}(60^{\circ}) = \sqrt{3}}

Item a)

Cateto adjacente = 18

Hipotenusa = 12\sqrt{3}

Aplicando Cossseno :

\displaystyle \text{Cos}(\alpha) = \frac{18}{12\sqrt{3}} \to \text{Cos}(\alpha) = \frac{6}{2\sqrt{3}}

Racionalizando :

\displaystyle \text{Cos}(\alpha) = \frac{3}{2\sqrt{3}}.\frac{\sqrt{3}}{\sqrt{3}} \to \text{Coss}(\alpha) = \frac{3\sqrt{3}}{2.3} \to \text{Cos}(\alpha) = \frac{\sqrt{3}}{2}

\huge\boxed{\alpha = 30^{\circ}} \checkmark

item b)

Cateto oposto = 5

Cateto adjacente = 5\sqrt{3}

Aplicando Tangente :

\displaystyle \text{Tg}(\beta) = \frac{5}{5.\sqrt{3}} \to \text{Tg}(\beta) = \frac{1}{\sqrt{3}}

Racionalizando :

\displaystyle \text{Tg}(\beta) = \frac{1}{\sqrt{3}}.\frac{\sqrt{3}}{\sqrt{3}} \to \text{Tg}(\beta) = \frac{\sqrt{3}}{3}

\huge\boxed{\beta = 30^{\circ}}\checkmark


vitoria2448: Obrigada!!
Perguntas interessantes