determine em cada função as coordenadas do vertice e indique se e ponto de maximo ou ponto de minimo ? a,f(x)=x² b,f(x)= -6x² -12x c,f(x)=-20x²-300 d,f(x)=x²-12x+10
Soluções para a tarefa
Respondido por
23
a,f(x)=x² a>o minimo
Xv = - b/2a = 0 ==> Xv= 0 ; Yv= - delta ==> Yv= - 0 ==>Yv= 0
2.1 4a 4.1
Pv( 0 , 0 )
b,f(x)= -6x² -12x a< 0 máximo
Xv = - b/2a = 12 ==> Xv= -1 ; Yv= - delta ==> Yv= - 0 ==>Yv= 0
2.(-6) 4a 4.(-6)
Pv( - 1 , 0 )
c,f(x)=-20x²-300 a < 0 maximo
Xv = - b/2a = 0 ==> Xv= 0 ; Yv= - delta ==> Yv= - (-24000) ==>Yv= 800
2.(-20) 4(-20) 4.(-20)
delta=0^2-4.(-20).(-300) = 0-24000= - 24000
Pv( 0 , 800 )
d,f(x)=x²-12x+10 a > 0 minimo
Xv = - b/2a = -(-12) ==> Xv= 6 ; Yv= - delta ==> Yv= - 96 ==>Yv= - 24
2.1 4a 4.1
delta=(-12)^2-4.1.(-12) = 144-48= 96
Pv( 6 , - 24 )
Xv = - b/2a = 0 ==> Xv= 0 ; Yv= - delta ==> Yv= - 0 ==>Yv= 0
2.1 4a 4.1
Pv( 0 , 0 )
b,f(x)= -6x² -12x a< 0 máximo
Xv = - b/2a = 12 ==> Xv= -1 ; Yv= - delta ==> Yv= - 0 ==>Yv= 0
2.(-6) 4a 4.(-6)
Pv( - 1 , 0 )
c,f(x)=-20x²-300 a < 0 maximo
Xv = - b/2a = 0 ==> Xv= 0 ; Yv= - delta ==> Yv= - (-24000) ==>Yv= 800
2.(-20) 4(-20) 4.(-20)
delta=0^2-4.(-20).(-300) = 0-24000= - 24000
Pv( 0 , 800 )
d,f(x)=x²-12x+10 a > 0 minimo
Xv = - b/2a = -(-12) ==> Xv= 6 ; Yv= - delta ==> Yv= - 96 ==>Yv= - 24
2.1 4a 4.1
delta=(-12)^2-4.1.(-12) = 144-48= 96
Pv( 6 , - 24 )
Perguntas interessantes