Matemática, perguntado por Sshopia, 1 ano atrás

Determine as coordenadas do vértice das parábolas abaixo
a) y= x^2 -7x +10

b) y= -x^2 + 2x+3

Soluções para a tarefa

Respondido por elcapitanmeier8
1
para alínea a temos que a=1 b=-7 c=10

e as fórmulas pra o cálculo de Xv e Yv são
xv =   - \frac{b}{2a}  \: e \: yv =   - \frac{(b {}^{2}  - 4ac) }{4a}
agor podemos achar os vértices
xv =  -   \frac{ ( - 7)}{2}  \\ xv =  \frac{7}{2}
Xv=7/2

yv =   - \frac{(( - 7) {}^{2} - 4 \times 1 \times 10) }{4 \times 1}  \\ yv =  - (49 - 40) \div 4 \\ yv =    - \frac{9}{4}
Yv=-9/4

para alínea B temos que a=-1 b=2 e c=3
xv =  -  \frac{2}{ - 2}  \\ xv = 1
xv=1

yv =   - \frac{(2 {}^{2} - 4( - 1)3 }{ - 4}  \\ yv =  -  \frac{(4 + 12)}{ - 4}  \\ yv =  \frac{ - 16}{ - 4}  \\ yv = 4
yv=4
Perguntas interessantes