Matemática, perguntado por eff30, 7 meses atrás

determine as coordenadas do ponto M (Xm, Ym) que é o ponto médio do segmento AB a) A=(3,5) e B(8,5) b) A=(5,-1) e B(1,7) c) A=(2,-1) e B (-4,-1)​

Soluções para a tarefa

Respondido por auditsys
11

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{M = \{\dfrac{x_A + x_B}{2};\dfrac{y_A + y_B}{2}\}}

\mathsf{M_{AB} = \{\dfrac{3 + 8}{2};\dfrac{5 + 5}{2}\}}

\mathsf{M_{AB} = \{\dfrac{11}{2};\dfrac{10}{2}\}}

\boxed{\boxed{\mathsf{M_{AB} = \{\dfrac{11}{2};5\}}}}\leftarrow\textsf{letra A}

\mathsf{M = \{\dfrac{x_A + x_B}{2};\dfrac{y_A + y_B}{2}\}}

\mathsf{M_{AB} = \{\dfrac{5 + 1}{2};\dfrac{-1 + 7}{2}\}}

\mathsf{M_{AB} = \{\dfrac{6}{2};\dfrac{6}{2}\}}

\boxed{\boxed{\mathsf{M_{AB} = \{3;3\}}}}\leftarrow\textsf{letra B}

\mathsf{M = \{\dfrac{x_A + x_B}{2};\dfrac{y_A + y_B}{2}\}}

\mathsf{M_{AB} = \{\dfrac{2 - 4}{2};\dfrac{-1 - 1}{2}\}}

\mathsf{M_{AB} = \{\dfrac{-2}{2};\dfrac{-2}{2}\}}

\boxed{\boxed{\mathsf{M_{AB} = \{-1;-1\}}}}\leftarrow\textsf{letra C}


eff30: Obrigado ajudou muito
Perguntas interessantes