Matemática, perguntado por janduir123, 1 ano atrás

determine a intersecção da reta y= 2x - 1 com a reta definida pelos pontos (2,1) e (0,0)

Soluções para a tarefa

Respondido por MATHSPHIS
13
a) Vamos determinara a equação da reta que passa nos pontos (2,1), (0,0)

  \left|\begin{array}{ccc}x&y&1\\2&1&1\\0&0&1\end{array}\right| =0\\
\\
x-2y=0\\ \\ x=2y

b) Substituindo x na equação da reta dada:

y=2(2y)-1
y=4y-1
3y=1
y=1/3

c) Calculando a abscissa do ponto de intercecção:

x=2y
x = 2 . 1/3
x = 2/3

c) O ponto de intersecção é então P(2/3; 1/3)

janduir123: obrigado, esta completamente certa
Respondido por Usuário anônimo
1

Temos uma reta
                     y = 2x - 1          (1)
Precisa da outra para determinar interseção
                     y = b + mx
Com P1(2,1) e P2(0,0)
                     m = (y2 - y1)/(x2- - x1)
                         = (0 - 1)/(0 - 2)
                         = -1/-2
                         = 1/2
Em P2(0,0)
                     0 = b + (1/2)(0)
                     b = 0
A outra reta é
                      y = 1/2x        (2)
De (1) e (2)
         y = y
                     2x - 1 = 1/2x
                     4x - 2 = x
                     3x = 2
                                           x = 2/3
x em (2)
                       y = 1/2(2/3)
                          = 2/6
                                           y = 1/3
                                                             INTERSEÇÃO DAS RETAS
                                                                      P(2/3, 1/3)
                                         
Perguntas interessantes