Determine a equação reduzida da reta que passa pelos pontos A(5, -4) e B(1, 2).
Soluções para a tarefa
Respondido por
1
Resposta:
Explicação passo-a-passo:
temos:
A(5, -4)
B(1, 2)
Solução:
Inicialmente calculamos o coeficiente angular:
m = yA - yB \ xA - xB
m = -4-2 \ 5-1
m = -6\4
m = -3\2
Conhecendo o ponto A(5 -4) e m = -3\2, basta substituir esses valores na equação fundamental da reta e isolar o y.
Logo:
y - yA = m.(x - xA)
y - (-4) = -3\2.(x - 5)
y+4 = -3x+15 \ 2
2(y+4) = -3x+15
2y+8 = -3x+15
2y = -3x+15-8
2y = -3x+7
y = -3x\2 + 7\2
Portanto, a equação reduzida da reta é y = -3x\2 + 7\2
Perguntas interessantes
Matemática,
8 meses atrás
Matemática,
8 meses atrás
Ed. Física,
10 meses atrás
Matemática,
10 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás