Determine a equaçao geral da reta que passa pelos pontos a (1,1) b (0,2)
Soluções para a tarefa
Respondido por
4
Vamos lá.
Veja, Dinhausp, que a resolução é simples.
Pede-se a equação geral da reta que passa pelos pontos A(1; 1) e B(0; 2).
Antes veja que se uma reta passa nos pontos A(x₀; y₀) e B(x₁; y₁), então o seu coeficiente angular (m) será encontrado da seguinte forma:
m = (y₁-y₀)/(x₁-x₀).
Dessa forma, tendo a expressão acima como parâmetro, então o coeficiente angular (m) da reta que passa nos pontos A(1; 1) e B(0; 2) terá o seu coeficiente angular encontrado assim:
m = (2-1)/(0-1)
m = (1)/(-1) --- ou apenas:
m = 1/-1
m = - 1 <--- Este é o coeficiente angular da reta da sua questão.
Agora veja mais uma coisa: se você já conhece o coeficiente angular (m) de uma reta e APENAS um ponto por onde ela passa (x₀; y₀), então a equação dessa reta será encontrada assim:
y - y₀ = m*(x - x₀)
Bem, tendo, portanto, a relação acima como parâmetro, então a reta que tem coeficiente angular igual a "-1" (m = -1) e passa em um dos pontos dados [veja que basta escolher um dos pontos dados, que tanto poderá ser o ponto A(1; 1) como o ponto B(0; 2)] terá a equação encontrada da seguinte forma (vamos considerar o ponto A(1; 1) ):
y - 1 = -1*(x - 1)
y - 1 = - x + 1 ----- passando todo o 2º membro para o 1º, teremos:
y - 1 + x - 1 = 0 ---- vamos ordenar e reduzir os termos semelhantes, ficando:
x + y - 2 = 0 <--- Esta é a resposta. Esta é a equação geral da reta que passa nos pontos A(1; 1) e B(0; 2).
Observação: se você tivesse escolhido o ponto B(0; 2) a equação da reta seria a mesma. Por isso é que dissemos acima: quando já se conhece o coeficiente angular (m) de uma reta e APENAS um ponto por onde ela passa (x₀; y₀), a equação poderá ser encontrada pela fórmula: y-y₀ = m*(x-x₀).
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
Veja, Dinhausp, que a resolução é simples.
Pede-se a equação geral da reta que passa pelos pontos A(1; 1) e B(0; 2).
Antes veja que se uma reta passa nos pontos A(x₀; y₀) e B(x₁; y₁), então o seu coeficiente angular (m) será encontrado da seguinte forma:
m = (y₁-y₀)/(x₁-x₀).
Dessa forma, tendo a expressão acima como parâmetro, então o coeficiente angular (m) da reta que passa nos pontos A(1; 1) e B(0; 2) terá o seu coeficiente angular encontrado assim:
m = (2-1)/(0-1)
m = (1)/(-1) --- ou apenas:
m = 1/-1
m = - 1 <--- Este é o coeficiente angular da reta da sua questão.
Agora veja mais uma coisa: se você já conhece o coeficiente angular (m) de uma reta e APENAS um ponto por onde ela passa (x₀; y₀), então a equação dessa reta será encontrada assim:
y - y₀ = m*(x - x₀)
Bem, tendo, portanto, a relação acima como parâmetro, então a reta que tem coeficiente angular igual a "-1" (m = -1) e passa em um dos pontos dados [veja que basta escolher um dos pontos dados, que tanto poderá ser o ponto A(1; 1) como o ponto B(0; 2)] terá a equação encontrada da seguinte forma (vamos considerar o ponto A(1; 1) ):
y - 1 = -1*(x - 1)
y - 1 = - x + 1 ----- passando todo o 2º membro para o 1º, teremos:
y - 1 + x - 1 = 0 ---- vamos ordenar e reduzir os termos semelhantes, ficando:
x + y - 2 = 0 <--- Esta é a resposta. Esta é a equação geral da reta que passa nos pontos A(1; 1) e B(0; 2).
Observação: se você tivesse escolhido o ponto B(0; 2) a equação da reta seria a mesma. Por isso é que dissemos acima: quando já se conhece o coeficiente angular (m) de uma reta e APENAS um ponto por onde ela passa (x₀; y₀), a equação poderá ser encontrada pela fórmula: y-y₀ = m*(x-x₀).
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
adjemir:
Veja se gostou da nossa resposta, ok? Continue a dispor e um abraço.
Perguntas interessantes
Inglês,
9 meses atrás
História,
9 meses atrás
Geografia,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás