determine a equação da circunferencia de centro c(1,0) e que é tangente à reta s de equação 3x+2y-16=0
Soluções para a tarefa
Respondido por
1
Eu não entendi direito a pergunta, queria muito poder ajudar mais essa questão me deixou muito confusa!!
Respondido por
1
Resposta:x^2+y^2-2x-12=0
Explicação passo-a-passo: sendo a reta s tangente à circunferência, podemos afirmar q r = a distância do centro da circunferencia à projeção do ponto C(1,0) na reta, então, aplicando:
D= |3x +2y -16| / raiz de 3^2 + 2^2
D= |3×1+2×0-16| / raiz de 13
D= 13/raiz de 13
D= raiz de 13
Por tanto R^2 = 13
Substituindo na equaçao reduzida : (x-1)^2 +(y)^2 =R^2
(x-1)^2 +(y)^2 = 13
Desenvolvendo :
x^2+y^2-2x-12=0
Perguntas interessantes
Matemática,
9 meses atrás
Física,
9 meses atrás
História,
9 meses atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Administração,
1 ano atrás
Administração,
1 ano atrás