Determine a e b para que as retas (r) ax - 2y + 6=0 e (s) x+4y - b = a sejam perpendiculares.
OBS : a = alfa
b= beta
Soluções para a tarefa
Respondido por
47
As retas em sua forma reduzida
ax - 2y + 6 = 0 (r)
2y = ax + 6
y = (a/2)x + 3 (r)
x + 4y + b = a (s)
4y = - x + a - b
y = (- 1/4)x + 1/4(a - b) (s)
Sendo perpendiculares, os coeficientes angulares das retas tem a relação
m(r) = - 1/m(s)
a/2 = - 1/(- 1/4)
a/2 = 4
a = 8
O coeficiente linear pode ser qualquer número real
1/4(a - b) = x
1/4(8 - b) = x
2 - b/4 = x
2 - x = b/4
b = 8 - 4x
b = { b∈R| b = 8 - 4x, x∈R }
cellyg35:
Muito obrigada mesmo !!
Perguntas interessantes