Determine a área e o comprimento de uma circunferência que tenha 20 cm de raio. Use pi = 3,14.
Soluções para a tarefa
Resposta:
Dada um círculo qualquer de raio r, sua área (A) será dada por:
A = πr2 → fórmula para o cálculo da área de um círculo de raio r.
Vamos fazer alguns exemplos para entender a utilização da fórmula.
Exemplo 1. Determine a área de um círculo de raio medindo 20 cm. (Use π = 3,14)
Solução: Temos que
r = 20 cm
π = 3,14
A = ?
A = 3,14?202
A = 3,14?400
A = 1256 cm2
Exemplo 2 . Calcule a área de um círculo de 30 cm de diâmetro. (Use π = 3,14)
Solução: Temos
d = 30 cm → r = d/2 → r = 15 cm
A = ?
A = 3,14?152
A = 3,14?225
A = 706,5 cm2
Exemplo 3. Se um círculo possui a circunferência de 43,96 cm de comprimento, qual será o tamanho de sua área? (Use π = 3,14)
Solução: Note que não temos a medida do raio do círculo. Através do comprimento que foi dado, vamos encontrar a medida do raio. A fórmula do comprimento da circunferência é:
C = 2πr
Assim,
43,96 = 2?3,14?r
43,96 = 6,28?r
r = 43,96/6,28
r = 7 cm
Conhecendo o valor do raio podemos calcular a área.
A=3,14?72
A=3,14?49
A=153,86 cm2
Exemplo 4 . Um fazendeiro possui 628 m de tela para fazer um galinheiro. Existem dois projetos para a realização desse galinheiro: um galinheiro quadrado e um galinheiro circular. O fazendeiro irá optar pelo projeto que possuir a maior área. Qual dos dois projetos é o que irá satisfazer sua vontade? (Use π = 3,14)
Solução: Como o fazendeiro possui 628 m de tela para fazer o galinheiro, o perímetro do quadrado e da circunferência será de 628 m. Vamos então calcular a área de cada uma das figuras, usando a mesma quantidade de tela, e verificar qual dos projetos apresenta a maior área.
Área do quadrado:
Como o perímetro do quadrado é de 628 m, cada lado terá 157 m de comprimento. (628÷4)
Assim,
A = 1572
A = 24649 m2
Área da circunferência:
Sabemos que o comprimento da circunferência também é 628 m, pois temos a mesma quantidade de tela. Precisamos encontrar a medida do raio dessa circunferência.
C=2πr
628 = 2?3,14?r
628 = 6,28?r
r = 628/6,28
r = 100 m
Assim,
A = 3,14?1002
A = 3,14?10000
A = 31400 m2
Portanto, o galinheiro que terá a maior área será o de formato circular.