Determinar o trigésimo termo da PA 1,6
Soluções para a tarefa
r = a2 - a1
r = 6 - 1
r = 5
an = a1 + ( n -1 ) . r
a30 = 1 + ( 30 -1 ) . 5
a30 = 1 + 29 . 5
a30 = 1 + 145
a30 = 146
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da sequência (1, 6,...), tem-se que:
a)cada elemento nela presente, exceto o primeiro, será o resultado do imediatamente anterior adicionado a um mesmo valor, a saber, 5 unidades (por exemplo, 6=1+5). Se um comportamento deste tipo acontece (soma de um mesmo valor para formar os termos seguintes), tem-se uma sequência numérica especial, denominada progressão aritmética (P.A.).
b)progressão aritmética é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
c)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 1
d)trigésimo termo (a₃₀): ?
e)número de termos (n): 30
- Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 30ª), equivalente ao número de termos.
f)Embora não se saiba o valor do trigésimo termo, pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastando-se do zero, à direita deste, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero, porque o segundo termo é positivo e a ele e aos próximos será sempre somado um valor positivo.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 6 - 1 ⇒
r = 5 (Razão positiva, conforme prenunciado no item f acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o trigésimo termo:
an = a₁ + (n - 1) . r ⇒
a₃₀ = a₁ + (n - 1) . (r) ⇒
a₃₀ = 1 + (30 - 1) . (5) ⇒
a₃₀ = 1 + (29) . (5) ⇒
a₃₀ = 1 + 145 ⇒
a₃₀ = 146
RESPOSTA: O trigésimo termo da P.A. (1, 6, ...) é 146.
====================================================
VERIFICAÇÃO DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₃₀ = 146 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o trigésimo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₃₀ = a₁ + (n - 1) . (r) ⇒
146 = a₁ + (30 - 1) . (5) ⇒
146 = a₁ + (29) . (5) ⇒
146 = a₁ + 145 ⇒
146 - 145 = a₁ ⇒
1 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 1 (Provado que a₃₀ = 146.)
→Veja outras tarefas relacionadas à determinação de termos em sequências do tipo progressão aritmética e resolvidas por mim:
brainly.com.br/tarefa/30860188
brainly.com.br/tarefa/30805634
brainly.com.br/tarefa/12963811
brainly.com.br/tarefa/29994834
brainly.com.br/tarefa/29841264