Determinar o número de termos da PA (8, 11, 14, ..., 155). *
Soluções para a tarefa
resolução!
r = a2 - a1
r = 11 - 8
r = 3
an = a1 + ( n - 1 ) r
155 = 8 + ( n - 1 ) 3
155 = 8 + 3n - 3
155 = 5 + 3n
155 - 5 = 3n
150 = 3n
n = 150 / 3
n = 50
resposta : PA de 50 termos
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da P.A. (8, 11, 14, ..., 155), tem-se que:
a)trata-se de uma progressão aritmética (PA) finita, porque se sabe qual é o último termo, embora não se conheça a sua posição, a ordem em que ele se encontra na referida sequência;
b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 8
c)último termo (an): 155 (Chama-se último termo ou enésimo termo porque não se conhece a posição (a ordem) que ele ocupa na progressão.)
d)número de termos (n): ? (Embora não se saiba o seu valor, necessariamente se diz que será positivo e inteiro, porque não existe indicação de quantidade por meio de números negativos e de decimais.)
e)por meio da observação dos dois primeiros termos e do último da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos sempre crescem e, para que isso aconteça, necessariamente se deve somar um termo positivo, a razão, a um termo qualquer).
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 11 - 8 ⇒
r = 3 (Razão positiva, conforme prenunciado no item e acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o número de termos:
an = a₁ + (n - 1) . r ⇒
155 = 8 + (n - 1) . (3) ⇒
155 = 8 + 3n - 3 ⇒
155 = 5 + 3n ⇒
155 - 5 = 3n ⇒
150 = 3n ⇒
150/3 = n ⇒
50 = n ⇔ (O símbolo ⇔ significa "equivale a".)
n = 50
Resposta: O número de termos da P.A.(8, 11, 14, ..., 155) é 50.
=======================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo n = 50 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o número de termos realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
155 = a₁ + (50 - 1) . (3) ⇒
155 = a₁ + (49) . (3) ⇒ (Veja a Observação 2.)
155 = a₁ + 147 ⇒
155 - 147 = a₁ ⇒
8 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 4 (Provado que n = 50.)
Observação 2: Na parte destacada, foi aplicada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam em sinal de positivo (+).
→Veja outras tarefas relacionadas à determinação do número de termos em progressão aritmética e resolvidas por mim:
brainly.com.br/tarefa/25629220
brainly.com.br/tarefa/25571370
brainly.com.br/tarefa/584446
brainly.com.br/tarefa/1081180
https://brainly.com.br/tarefa/9095594