Matemática, perguntado por luanraycaho, 4 meses atrás

Dertermine as cordenadas do vértice da barabola de cada função
A) f(x)= x²-2x+5
B) f(x)= 3x²+12x+8
C) f(x)= -2x²-4x+7
D) f(x)= -2x²-3

Soluções para a tarefa

Respondido por marineidedejesussilv
0

Resposta:

a) V = (1, 2)

b) V = (-1/2, -1)

c) V = (3, -11)

d) V = (1/3, 2/3)

e) V = (5, 10/3)

f) V = (\sqrt{3}/2

3

/2 , 3/4)

Explicação passo-a-passo:

As coordenadas do vértice de uma parábola ax^2+bx+cax

2

+bx+c são dadas por

x_v = \frac{-b}{2a}x

v

=

2a

−b

y_v = \frac{-\Delta}{4a}y

v

=

4a

−Δ

a) f(x) = x^2-2x+3f(x)=x

2

−2x+3

Temos a=1, b=-2 e c=3. Assim,

x_v=\frac{-b}{2a} = \frac{-(-2)}{2\cdot1}=\frac{2}{2}=1.x

v

=

2a

−b

=

2⋅1

−(−2)

=

2

2

=1.

y_v=\frac{-\Delta}{4\cdot a}=\frac{-((-2)^2-4\cdot 1\cdot 3)}{4\cdot 1}=\frac{-(4-12)}{4}=\frac{12-4}{4}=\frac{8}{4}=2.y

v

=

4⋅a

−Δ

=

4⋅1

−((−2)

2

−4⋅1⋅3)

=

4

−(4−12)

=

4

12−4

=

4

8

=2.

Portanto,

V = (1,2).

b) f(x)=4x^2+4f(x)=4x

2

+4

Temos a=4, b=4 e c=0. Assim,

x_v=\frac{-b}{2a} = \frac{-4}{2\cdot4}=\frac{-4}{8}=-1/2.x

v

=

2a

−b

=

2⋅4

−4

=

8

−4

=−1/2.

y_v=\frac{-\Delta}{4\cdot a}=\frac{-(4^2-4\cdot4\cdot 0)}{4\cdot 4}=\frac{-16}{16}=1.y

v

=

4⋅a

−Δ

=

4⋅4

−(4

2

−4⋅4⋅0)

=

16

−16

=1.

Portanto,

V = (-1/2,1).

c) f(x)=2x^2-12x+7f(x)=2x

2

−12x+7

Temos a=2, b=-12 e c=7. Assim,

x_v=\frac{-b}{2a} = \frac{-(-12)}{2\cdot2}=\frac{12}{4}=3x

v

=

2a

−b

=

2⋅2

−(−12)

=

4

12

=3

y_v=\frac{-\Delta}{4\cdot a}=\frac{-((-12)^2-4\cdot2\cdot 7)}{4\cdot 2}=\frac{-(144-56)}{8}=\frac{-88}{8}=-11.y

v

=

4⋅a

−Δ

=

4⋅2

−((−12)

2

−4⋅2⋅7)

=

8

−(144−56)

=

8

−88

=−11.

Portanto,

V = (3,-11).

d) f(x)=3x^2-2x+1f(x)=3x

2

−2x+1

Temos a=3, b=-2 e c=1. Assim,

x_v=\frac{-b}{2a} = \frac{-(-2)}{2\cdot3}=\frac{2}{6}=(1/3).x

v

=

2a

−b

=

2⋅3

−(−2)

=

6

2

=(1/3).

y_v=\frac{-\Delta}{4\cdot a}=\frac{-((-2)^2-4\cdot3\cdot1)}{4\cdot3}=\frac{-(4-12)}{12}=\frac{12-4}{4}=\frac{8}{12}=2/3.y

v

=

4⋅a

−Δ

=

4⋅3

−((−2)

2

−4⋅3⋅1)

=

12

−(4−12)

=

4

12−4

=

12

8

=2/3.

Portanto,

V = (1/3,2/3).

e) f(x) = 1/3x^2-10/3x+5f(x)=1/3x

2

−10/3x+5

Temos a=1/3, b=-10/3 e c=5. Assim,

x_v=\frac{-b}{2a} = \frac{-(-10/3)}{2\cdot1/3}=\frac{10/3}{2/3}=\frac{10}{3}\cdot\frac{3}{2}=\frac{10}{2}=5.x

v

=

2a

−b

=

2⋅1/3

−(−10/3)

=

2/3

10/3

=

3

10

2

3

=

2

10

=5.

y_v=\frac{-\Delta}{4\cdot a}=\frac{-((-10/3)^2-4\cdot1/3\cdot5)}{4\cdot1/3}=\frac{-(100/9-20/3)}{4/3}=\frac{-(100/9-60/9)}{4/3}=\frac{-40/9}{4/3}=\frac{-40}{9}\cdot \frac{3}{4}=\frac{-120}{36}=\frac{-10}{3}.y

v

=

4⋅a

−Δ

=

4⋅1/3

−((−10/3)

2

−4⋅1/3⋅5)

=

4/3

−(100/9−20/3)

=

4/3

−(100/9−60/9)

=

4/3

−40/9

=

9

−40

4

3

=

36

−120

=

3

−10

.

Portanto,

V = (5,-10/3).

) f(x) = x^2-\sqrt{3}xf(x)=x

2

3

x

Temos a = 1, b = -\sqrt{3}−

3

e c = 0. Assim,

x_v=\frac{-b}{2a} = \frac{-(-\sqrt{3})}{2\cdot1}=\frac{\sqrt{3}}{2}x

v

=

2a

−b

=

2⋅1

−(−

3

)

=

2

3

y_v=\frac{-\Delta}{4\cdot a}=\frac{-(b^2-4\cdot a \cdot c)}{4\cdot a}=\frac{-((-\sqrt{3})^2-4\cdot 1 \cdot 0)}{4\cdot 1}=\frac{-(3-0)}{4}=\frac{-3}{4}y

v

=

4⋅a

−Δ

=

4⋅a

−(b

2

−4⋅a⋅c)

=

4⋅1

−((−

3

)

2

−4⋅1⋅0)

=

4

−(3−0)

=

4

−3

Portanto,

V = (\sqrt{3}/2

3

/2 ,-3/4).

Perguntas interessantes