Derivar
![y= \frac{1}{3}ln(t+1)- \frac{1}{6} ln(t^2-t+1)+ \frac{1}{ \sqrt{3} }arctg( \frac{2t-1}{ \sqrt{3} } ) y= \frac{1}{3}ln(t+1)- \frac{1}{6} ln(t^2-t+1)+ \frac{1}{ \sqrt{3} }arctg( \frac{2t-1}{ \sqrt{3} } )](https://tex.z-dn.net/?f=y%3D+%5Cfrac%7B1%7D%7B3%7Dln%28t%2B1%29-+%5Cfrac%7B1%7D%7B6%7D+ln%28t%5E2-t%2B1%29%2B+%5Cfrac%7B1%7D%7B+%5Csqrt%7B3%7D+%7Darctg%28+%5Cfrac%7B2t-1%7D%7B+%5Csqrt%7B3%7D+%7D+%29++)
R: ![y'= \frac{1}{t^3+1} y'= \frac{1}{t^3+1}](https://tex.z-dn.net/?f=y%27%3D+%5Cfrac%7B1%7D%7Bt%5E3%2B1%7D+)
Soluções para a tarefa
Respondido por
2
Olá!
Derivando a função termo a termo, afim de facilitar a visualização, temos:
Termo I:
![\\ \mathsf{y_1 = \frac{1}{3} \cdot \ln (t + 1)} \\\\ \mathsf{y_1' = \frac{1}{3} \cdot \frac{1}{t + 1} \cdot 1} \\\\ \boxed{\mathsf{y_1' = \frac{1}{3(t + 1)}}} \\ \mathsf{y_1 = \frac{1}{3} \cdot \ln (t + 1)} \\\\ \mathsf{y_1' = \frac{1}{3} \cdot \frac{1}{t + 1} \cdot 1} \\\\ \boxed{\mathsf{y_1' = \frac{1}{3(t + 1)}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7By_1+%3D+%5Cfrac%7B1%7D%7B3%7D+%5Ccdot+%5Cln+%28t+%2B+1%29%7D+%5C%5C%5C%5C+%5Cmathsf%7By_1%27+%3D+%5Cfrac%7B1%7D%7B3%7D+%5Ccdot+%5Cfrac%7B1%7D%7Bt+%2B+1%7D+%5Ccdot+1%7D+%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7By_1%27+%3D+%5Cfrac%7B1%7D%7B3%28t+%2B+1%29%7D%7D%7D)
Termo II:
![\\ \mathsf{y_2 = \frac{1}{6} \cdot \ln (t^2 - t + 1)} \\\\ \mathsf{y_2' = \frac{1}{6} \cdot \frac{1}{t^2 - t + 1} \cdot (2t - 1)} \\\\ \boxed{\mathsf{y_2' = \frac{2t - 1}{6(t^2 - t + 1)}}} \\ \mathsf{y_2 = \frac{1}{6} \cdot \ln (t^2 - t + 1)} \\\\ \mathsf{y_2' = \frac{1}{6} \cdot \frac{1}{t^2 - t + 1} \cdot (2t - 1)} \\\\ \boxed{\mathsf{y_2' = \frac{2t - 1}{6(t^2 - t + 1)}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7By_2+%3D+%5Cfrac%7B1%7D%7B6%7D+%5Ccdot+%5Cln+%28t%5E2+-+t+%2B+1%29%7D+%5C%5C%5C%5C+%5Cmathsf%7By_2%27+%3D+%5Cfrac%7B1%7D%7B6%7D+%5Ccdot+%5Cfrac%7B1%7D%7Bt%5E2+-+t+%2B+1%7D+%5Ccdot+%282t+-+1%29%7D+%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7By_2%27+%3D+%5Cfrac%7B2t+-+1%7D%7B6%28t%5E2+-+t+%2B+1%29%7D%7D%7D)
Quando ao Termo III, temos que:![\mathsf{f(x) = \arctan x \Rightarrow f'(x) = \frac{x'}{1 + x^2}} \mathsf{f(x) = \arctan x \Rightarrow f'(x) = \frac{x'}{1 + x^2}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bf%28x%29+%3D+%5Carctan+x+%5CRightarrow+f%27%28x%29+%3D+%5Cfrac%7Bx%27%7D%7B1+%2B+x%5E2%7D%7D)
Isto posto,
![\\ \mathsf{y_3 = \frac{1}{\sqrt{3}} \cdot \arctan \left ( \frac{2t - 1}{\sqrt{3}} \right )} \\\\\\ \mathsf{y_3' = \frac{1}{\sqrt{3}} \cdot \frac{\frac{2 \cdot \sqrt{3} - (2t - 1) \cdot 0}{3}}{1 + \frac{4t^2 - 4t + 1}{3}}} \\\\\\ \mathsf{y_3' = \frac{1}{\sqrt{3}} \cdot \frac{2\sqrt{3}}{3} \div \frac{4t^2 - 4t + 4}{3}} \\\\\\ \mathsf{y_3' = \frac{1}{1} \cdot \frac{2}{3} \div \frac{3}{4(t^2 - t + 1)}} \\\\\\ \mathsf{y_3' = \frac{1}{2(t^2 - t + 1)}} \\ \mathsf{y_3 = \frac{1}{\sqrt{3}} \cdot \arctan \left ( \frac{2t - 1}{\sqrt{3}} \right )} \\\\\\ \mathsf{y_3' = \frac{1}{\sqrt{3}} \cdot \frac{\frac{2 \cdot \sqrt{3} - (2t - 1) \cdot 0}{3}}{1 + \frac{4t^2 - 4t + 1}{3}}} \\\\\\ \mathsf{y_3' = \frac{1}{\sqrt{3}} \cdot \frac{2\sqrt{3}}{3} \div \frac{4t^2 - 4t + 4}{3}} \\\\\\ \mathsf{y_3' = \frac{1}{1} \cdot \frac{2}{3} \div \frac{3}{4(t^2 - t + 1)}} \\\\\\ \mathsf{y_3' = \frac{1}{2(t^2 - t + 1)}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7By_3+%3D+%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D+%5Ccdot+%5Carctan+%5Cleft+%28+%5Cfrac%7B2t+-+1%7D%7B%5Csqrt%7B3%7D%7D+%5Cright+%29%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By_3%27+%3D+%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D+%5Ccdot+%5Cfrac%7B%5Cfrac%7B2+%5Ccdot+%5Csqrt%7B3%7D+-+%282t+-+1%29+%5Ccdot+0%7D%7B3%7D%7D%7B1+%2B+%5Cfrac%7B4t%5E2+-+4t+%2B+1%7D%7B3%7D%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By_3%27+%3D+%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D+%5Ccdot+%5Cfrac%7B2%5Csqrt%7B3%7D%7D%7B3%7D+%5Cdiv+%5Cfrac%7B4t%5E2+-+4t+%2B+4%7D%7B3%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By_3%27+%3D+%5Cfrac%7B1%7D%7B1%7D+%5Ccdot+%5Cfrac%7B2%7D%7B3%7D+%5Cdiv+%5Cfrac%7B3%7D%7B4%28t%5E2+-+t+%2B+1%29%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By_3%27+%3D+%5Cfrac%7B1%7D%7B2%28t%5E2+-+t+%2B+1%29%7D%7D)
Com efeito,
![\\ \mathsf{y' = \frac{1}{3(t + 1)} - \frac{2t - 1}{6(t^2 - t + 1)} + \frac{1}{2(t^2 - t + 1)}} \\\\\\ \mathsf{y' = \frac{1}{3(t + 1)/2(t^2 - t + 1)} - \frac{2t - 1}{6(t^2 - t + 1)/(t + 1)} + \frac{1}{2(t^2 - t + 1)/3(t + 1)}} \\\\\\ \mathsf{y' = \frac{2(t^2 - t + 1) - (2t - 1)(t + 1) + 3(t + 1)}{6(t + 1)(t^2 - t + 1)}} \\\\\\ \mathsf{y' = \frac{2t^2 - 2t + 2 - (2t^2 + 2t - t - 1) + 3t + 3}{6(t^3 + 1)}} \\ \mathsf{y' = \frac{1}{3(t + 1)} - \frac{2t - 1}{6(t^2 - t + 1)} + \frac{1}{2(t^2 - t + 1)}} \\\\\\ \mathsf{y' = \frac{1}{3(t + 1)/2(t^2 - t + 1)} - \frac{2t - 1}{6(t^2 - t + 1)/(t + 1)} + \frac{1}{2(t^2 - t + 1)/3(t + 1)}} \\\\\\ \mathsf{y' = \frac{2(t^2 - t + 1) - (2t - 1)(t + 1) + 3(t + 1)}{6(t + 1)(t^2 - t + 1)}} \\\\\\ \mathsf{y' = \frac{2t^2 - 2t + 2 - (2t^2 + 2t - t - 1) + 3t + 3}{6(t^3 + 1)}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7By%27+%3D+%5Cfrac%7B1%7D%7B3%28t+%2B+1%29%7D+-+%5Cfrac%7B2t+-+1%7D%7B6%28t%5E2+-+t+%2B+1%29%7D+%2B+%5Cfrac%7B1%7D%7B2%28t%5E2+-+t+%2B+1%29%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%27+%3D+%5Cfrac%7B1%7D%7B3%28t+%2B+1%29%2F2%28t%5E2+-+t+%2B+1%29%7D+-+%5Cfrac%7B2t+-+1%7D%7B6%28t%5E2+-+t+%2B+1%29%2F%28t+%2B+1%29%7D+%2B+%5Cfrac%7B1%7D%7B2%28t%5E2+-+t+%2B+1%29%2F3%28t+%2B+1%29%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%27+%3D+%5Cfrac%7B2%28t%5E2+-+t+%2B+1%29+-+%282t+-+1%29%28t+%2B+1%29+%2B+3%28t+%2B+1%29%7D%7B6%28t+%2B+1%29%28t%5E2+-+t+%2B+1%29%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%27+%3D+%5Cfrac%7B2t%5E2+-+2t+%2B+2+-+%282t%5E2+%2B+2t+-+t+-+1%29+%2B+3t+%2B+3%7D%7B6%28t%5E3+%2B+1%29%7D%7D)
![\\ \mathsf{y' = \frac{6}{6(t^3 + 1)}} \\\\\\ \boxed{\boxed{\mathsf{\mathsf{y' = \frac{1}{t^3 + 1}}}}} \\ \mathsf{y' = \frac{6}{6(t^3 + 1)}} \\\\\\ \boxed{\boxed{\mathsf{\mathsf{y' = \frac{1}{t^3 + 1}}}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7By%27+%3D+%5Cfrac%7B6%7D%7B6%28t%5E3+%2B+1%29%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7B%5Cmathsf%7By%27+%3D+%5Cfrac%7B1%7D%7Bt%5E3+%2B+1%7D%7D%7D%7D%7D)
Derivando a função termo a termo, afim de facilitar a visualização, temos:
Termo I:
Termo II:
Quando ao Termo III, temos que:
Isto posto,
Com efeito,
avengercrawl:
Obrigado.
Perguntas interessantes