Matemática, perguntado por LucasJairo, 1 ano atrás

Derivada de
y=(x^4+8)lnx

Soluções para a tarefa

Respondido por deividsilva784
1
 \\ Y  = (x^4+8)lnx
 \\ 
 \\ Y' = (x^4+8)'lnx + (x^4+8)lnx'
 \\ 
 \\ y' = (4x^3+0)*lnx + (x^4+8)* \frac{1}{x} 
 \\ 
 \\ y' = 4x^3Lnx+  \frac{x^4+8}{x} 
 \\ 
 \\ y' =  \frac{x*(4x^3Lnx) + x^4+8}{x} 
 \\ 
 \\ y' =  \frac{4x^5Lnx + x^4+8}{x}
Respondido por Usuário anônimo
1

\sf \displaystyle y=\left(x^4+8\right)inx\\\\\\\frac{d}{dx}\left(\left(x^4+8\right)inx\right)\\\\\\=in\frac{d}{dx}\left(\left(x^4+8\right)x\right)\\\\\\=in\left(\frac{d}{dx}\left(x^4+8\right)x+\frac{d}{dx}\left(x\right)\left(x^4+8\right)\right)\\\\\\=in\left(4x^3x+1\cdot \left(x^4+8\right)\right)\\\\\\\to \boxed{\sf =i\left(8n+5nx^4\right)}

Perguntas interessantes