definição sobre pertence não pertence está contido não está contido união interseção e diferença em conjuntos numéricos
Soluções para a tarefa
Respondido por
3
A relação de pertence e não pertence é definida para elementos e conjunto, sendo que um determinado elemento pode pertencer ou não a um conjunto. Essa é uma relação de pertinência.
Exemplo: A={10,11,12,13} 14 ∉ A, 10 ∈ A.
Já a relação de contido e não contido é definida para conjuntos. sendo que um conjunto pode estar ou não contido dentro de outro conjunto. Se estiver contido, dizemos que é subconjunto desse conjunto. Essa é uma relação de inclusão
Exemplo: B = {2,4,5,7,11,13,17,19} e C = {2,4}. C⊂ B.
Dado dois ou mais conjuntos a união é reunião de todos os elementos de todos os conjuntos, exceto os elementos repetidos.
Dado dois ou mais conjuntos a intersecção desses conjuntos é somente os elementos comuns a todos os conjuntos.
Dados dois conjunto a diferença entre eles são do todos elementos de um conjunto que não são elementos de outro.
Exemplo: B = {2,4,5,7,11,13,17,19} e C = {2,4}.
B - C = {5,7,11,13,17,19}
Exemplo: A={10,11,12,13} 14 ∉ A, 10 ∈ A.
Já a relação de contido e não contido é definida para conjuntos. sendo que um conjunto pode estar ou não contido dentro de outro conjunto. Se estiver contido, dizemos que é subconjunto desse conjunto. Essa é uma relação de inclusão
Exemplo: B = {2,4,5,7,11,13,17,19} e C = {2,4}. C⊂ B.
Dado dois ou mais conjuntos a união é reunião de todos os elementos de todos os conjuntos, exceto os elementos repetidos.
Dado dois ou mais conjuntos a intersecção desses conjuntos é somente os elementos comuns a todos os conjuntos.
Dados dois conjunto a diferença entre eles são do todos elementos de um conjunto que não são elementos de outro.
Exemplo: B = {2,4,5,7,11,13,17,19} e C = {2,4}.
B - C = {5,7,11,13,17,19}
Perguntas interessantes