Matemática, perguntado por DayaneMalta, 1 ano atrás

Dados os pontos de (r) A(2,0) e B(0,2) e (s) C(-4,0) D(0,2) Determine o ponto de interseção de r e s

Soluções para a tarefa

Respondido por Usuário anônimo
0

Dayane,
Pra determinar a interseção de duas retas precisa ter as equações das retas.

A equação da reta tem a forma reduzida
                  y = b + mx
                        x, y = variável independente e dependente respectivamente
                            b = coeficiente lineal (ordenada na origem)
                            m = coeficiente angular (pendente)
                                    m = (y2 - y1)/(x2 - x1)
Vamos determinar as retas
 
            r                                                                    s
        
        m = (2 - 0)/(0 - 2)                                        m = (2 - 0)/[(0 - (- 4)]
            = - 1                                                            = 2/4 = 1/2
   Em (2, 0)                                                          Em (0, 2)
         0 = b - 1.2                                                    2 = b + (1/2).0 
         b = 2                                                             b = 2 - 1/2 / b = 3/2
 y = 2 - x                                                                y = 3/2 + (1/2)x

A interseção é P(x, y) onde x, y é a solução do sistema formado pelas retas

Resolvendo o sistema
      y = y 
     2 - x = 3/2 + x/2
multiplicando todo por 2
    4 - 2x = 3 + x
    4 - 3 = x + 2x
         1 = 3x
               x = 1/3
Na equação da reta r
             y = 2 - 1/3   (6/3 - 1/3)
               y = 5/3
                                                         PONTO DE INTERSEÇÃO DE r e s
                                                                          P(1/3, 5/3)
Perguntas interessantes