Matemática, perguntado por Renanraujo1, 1 ano atrás

Dados log2=A e Log3=B determine: a)Log6 b)Log24 c)Log300 d)1,5 e)Lg16 F)Log3 2. 12.dados log2=x e Log3=y determine: a)Log5 b)Log√3 c)Log³√12 d)Log1/3 e)Log0,06 F)Log4 27 13.Dados Log a=5,Log b=3 e Log c=2,Calculeo valor de log a.b²/c 14.sendo Logª 2=20 e Logª5=30,Calculem o valor de log a 100. 15.determine a expressões P sabendo que: a)LogP=2.Log a+5.Logb b)Log2 p=3.Log2 a+log2 b-2.Log2 c 16 Sabendo que x=Log10 5+Log10 8-Log10 4,Calculem o valor de x 17Escreva usando logaritmo de base 10. a)Log2 5 b)Logx 2 18.Determinem o numero cujo logaritmo na base a e 4 e na base a/3 e 8. 19.Calcule Log3 5 Log4 27.Log25 √2. 20.Sabendo que log20 2=a e Log20 3=B,Calculem o valor de Log6 5 21.Calculer: a)Log100 b)Log0,00001 c)Log0,001 d)Log10.000.000 22.Dados log2=0,30,Log3=0,48 e Log5=0,70 calculer. Agradeço muito quem me responder o mais rápido possível esse exercício e pra terça e não estou conseguindo resolver . OBS : responder com a conta feita , não quero só a resposta
dou 20 pontos

Anexos:

Renanraujo1: Ok tô precisando termina isso hoje mesmo já fiz da 1 até a décima questão agora só falta a 11,12,13,14,15,16,16,18,19,20,21 me ajuda ae por favor :/
adjemir: Veja que já respondemos a 1ª questão, que, no caso, é a 11ª questão. Só que, na nossa resposta, chamamos de 1ª questão. E, como você viu, só deu mesmo pra responder a 11ª questão, ficando as demais para ser "fatiadas" em outras mensagens. OK?
Renanraujo1: Ata eu entendo agora vocês não consegue fazer respostas enormes né tem um limite pra isso ?
adjemir: Exatamente. O espaço das respostas é exíguo e não vai caber um "bolo" de questões, como é o caso das questões que estão na sua "foto". Por isso é que você deverá "fatiar" as demais questões, de preferência colocando uma questão por mensagem. Certo?
Renanraujo1: Intendi vou ver se é possível envia uma de cada vez
Renanraujo1: Professor oque esse asterisco representa lá na conta ? tipo --> *
Renanraujo1: ---> *
adjemir: Todo asterisco, quando utilizado em operações matemáticas, quer dizer "sinal de multiplicação". Utiliza-se o asterisco para evitar confusão com o "x" e com o ponto ".", pois: o "x' poderá se confundir com a incógnita "x" de uma operação. E o ponto poderá ser confundir com o ponto que divide números, como por exemplo, em: 10.000.000. Assim, se temos uma multiplicação de 2 vezes 3 vezes 4, escreve-se assim: 2 * 3 * 4 . OK?
Renanraujo1: Intendi e porque no quatro o professor de matemática da minha escola custuman usar a pontuação pra representa o sinal de multiplicação tipo 3x3=3.3 pra não confundir com 3x
adjemir: Ele está certo, desde que não haja um número, como por exemplo, este número: "10.150.324". E aí os pontos que estão aí são pontos significando multiplicação ou são pontos de divisão do número dado? Por isso é que a utilização do asterisco para indicar multiplicação é o mais indicado quando estamos trabalhando com operações matemáticas, certo?

Soluções para a tarefa

Respondido por adjemir
247
Vamos lá.

Veja, Renan, vamos fazer como informamos no nosso último comentário.

1ª questão: Dados log (2) = a; e log (3) = b, calcule:

a) log (6) ----- veja que log (6) = log (2*3) . Assim, teremos:

log (6) = log (2*3) ---- vamos transformar o produto em soma. Assim:
log (6)= log (2) + log (3) ----- agora substituímos log (2) por "a" e log (3) por "b", ficando assim:

log (6) = a + b <---- Esta é a resposta para o item "a" da 1ª questão.

b) log (24) ---- veja que 24 = 2³ * 3 . Assim, ficaremos:

log (24) = log (2³ * 3) ----- transformando o produto em soma, teremos;
log (24) = log (2³) + log (3) ----- passando o expoente multiplicando, temos:
log (24) = 3*log (2) + log (3) ----- substituindo-se log (2) por "a" e log (3) por "b", teremos;

log (24) = 3*a + b
log (24 = 3a + b <---- Esta é a resposta para o item "b" da 1ª questão.

c)  log (300) ---- veja que 300 = 2² * 3 * 5² . Assim, ficaremos:

log (300) = log (2² * 3 * 5²) ---- transformando o produto em soma, teremos:
log (300) = log (2²) + log (3) + log (5²) ---- passando os expoentes multiplicando, temos:

log (300) = 2*log (2) + log (3) + 2*log (5) ---- veja que 5 = 10/2. Assim:
log (300) = 2*log (2) + log (3) + 2*log (10/2) ----- vamos transformar a divisão em subtração, ficando da seguinte forma:

log (300) = 2log (2) + log (3) + 2*[log (10) - log (2)]

Agora veja: considerando que log (10) = 1, pois estamos trabalhando na base "10". Assim, ficaremos com:

log (300) = 2*log (2) + log (3) + 2*1 - 2log (2) --- ou apenas:
log (300) = 2log(2) + log (3) + 2 - 2log(2) ---- reduzindo os termos semelhantes, ficaremos apenas com:

log (300) = log (3) + 2 ----- como log (3) = b, teremos;
log (300) = b + 2 <--- Esta é a resposta para o item "c" da 1ª questão.

d) log (1,5) ----- veja que 1,5 = 15/10. Assim, ficaremos:

log (1,5) = log (15/10) ---- vamos transformar a divisão em subtração:
log (1,5) = log (15) - log (10) ----- note que 15 = 3*5. Assim:
log (1,5) = log (3*5) - log (10) ---- transformando o produto em soma:
log (1,5) = log (3) + log (5) - log (10) ---- veja que 5 = 10/2. Logo:
log (1,5) = log (3) + log(10/2) - log (10) --- transformando a divisão em subtração, teremos:

log (1,5) = log (3) + log (10) - log (2) - log (10) ----- reduzindo os termos semelhantes, ficaremos apenas com (veja que: +log (10) corta-se com "-log (10)":

log (1,5) = log (3) - log (2) ---- substituindo-se log (3) por "b" e log (2) por "a", teremos;

log (1,5) = b - a <--- Esta é a resposta para o item "d" da 3ª questão.

e) log (16) ----- note que 16 = 2⁴. Assim, ficaremos:

log (16) = log (2⁴) ---- passando o expoente multiplicando, teremos:
log (16) = 4*log (2) ---- substituindo-se log (2) por "a", teremos:
log (16) = 4a <--- Esta é a resposta para o item "e" da 1ª questão.

f) log₃ (2) ----- vamos mudar a base para a base "10", com o que ficaremos assim:

log₃ (2) = log (2) / log (3) ------ agora basta que substituamos log (2) por "a" e log (3) por "b", com o que ficaremos:

log₃ (2) = a/b <--- Esta é a resposta do item "f" da 1ª questão.

Agora note: apenas para a 1ª questão já gastamos todo este espaço. Já não daria mais pra responder nenhuma questão adicionalmente.
Portanto, as outras questões, como você mesmo poderá constatar, terão que ficar para outras mensagens (por isso é que informamos antes: de preferência uma só questão por mensagem).

É isso aí.
Deu pra entender bem?

OK?
Adjemir.

adjemir: Disponha, e bastante sucesso pra você. Um abraço.
Renanraujo1: Obrigado me ajudou bastante
adjemir: Obrigado pela melhor resposta. Continue a dispor e um abraço.
adjemir: Disponha, Rodney. Um abraço.
Perguntas interessantes