Matemática, perguntado por gustavoemefas, 1 ano atrás

Dado o custo marginal de produção de uma fábrica de grampeadores C'(x) = 0,000009x³ - 0,007x + 2 e sendo seu custo fixo de R$ 7,50, calcule o custo total de 150 unidades.

Soluções para a tarefa

Respondido por raphaelbg9898
2

Resposta:

38,825

Explicação passo-a-passo:

da um calculo feio, mas espero ter acertado

substituindo o "x" por 150 unidades

9.10^-6.x^3 - 7.10^-3.x +2

9.10^-3(150)^3 - 7.10^-3.(150) + 2

30375.10^-3 - 1050.10^-3 + 2

30,375 - 1,050 + 2

31,325 mais o custo fixo de 7,5

custo total para 150 unidades é de 38,825

Respondido por adjemir
8

Vamos lá.

Veja, Gustavo, que a resolução é mais ou menos simples. Vamos tentar fazer tudo passo a passo para um melhor entendimento.

i) Tem-se que o custo marginal de produção de uma fábrica de grampeadores é dado por:

C'(x) = 0,000009x³ - 0,007x + 2 .

ii) Agora note que: o custo marginal nada mais é do que a primeira derivada do custo total. Então, a partir do custo marginal acima, vamos encontrar qual é a sua primitiva, ou seja, qual é a expressão que fez com a sua derivada fosse o custo marginal cuja expressão é a que está escrita aí em cima. Então vamos "desderivar" para encontrar a equação primitiva. Quando falamos em "desderivar" estamos dizendo que vamos encontrar qual é a integral simples de uma expressão. Então encontrando a integral simples, faremos isto (é uma regra prática: você soma "1" unidade ao expoente da derivada e divide pelo valor do expoente+1. Veja:

∫(0,000009x³ - 0,007x + 2) dx  = 0,000009x³⁺¹/(3+1) - 0,007x¹⁺¹/(1+1) + 2x⁰⁺¹/(0+1) + C <---- o  "C" é a constante. ----- Desenvolvendo, teremos a função do custo total "C(x)". Assim:

C(x) = 0,000009x⁴ / 4 - 0,007x² / 2 + 2x¹ / 1 + C ---- ou apenas:

C(x) = 0,000009x⁴ / 4 - 0,007x² / 2 + 2x + C ----- como está sendo informado que o custo fixo é igual a R$ 7,50 , então esse valor será a nossa constante "C". Assim, a função custo total será esta:

C(x) = 0,000009x⁴ / 4 - 0,007x² / 2 + 2x + 7,50

Agora note que está sendo pedido o custo total de 150 unidades. Então é só substituir "x" por "150" e teremos o valor do custo total de 150 unidades. Assim teremos:

C(150) = 0,000009*150⁴ / 4 - 0,007*150² / 2 + 2*150 + 7,50 ---- desenvolvendo as potências indicadas, teremos:

C(150) = 0,000009*506.250.000/4 - 0,007*22.500/2 + 300 + 7,50

C(150) = 4.556,25 / 4 - 157,50/2 + 300 + 7,50

C(150) = 1.139,06 - 78,75 + 300 + 7,50 ---- efetuando esta soma algébrica, teremos:

C(150) = 1.367,81 <--- Esta deverá ser a resposta (bem aproximada) do custo total de 150 unidades.


É isso aí.

Deu pra entender bem?


OK?

Adjemir.


gustavoemefas: Sim!! Muito obrigado. ;)
adjemir: Disponha, Gustavo, e bastante sucesso. Um abraço.
Gusttavosouza16: → Melhor Resposta com certeza como sempre um show de conhecimento.
adjemir: Amigo Gusttavosouza, obrigado pelo elogio. Um cordial abraço.
adjemir: Também agradecemos à moderadora Jacquefr pela aprovação da nossa resposta. Um cordial abraço.
adjemir: E aí, Gustavoemefas, era isso mesmo o que você estava esperando?
Perguntas interessantes