Matemática, perguntado por dff268296, 6 meses atrás

dado a equação de 2° grau: 2x .(x - 4) + 10 = - x² + 3x​

Soluções para a tarefa

Respondido por JovemLendário
6

As Raízes da equação 3x² - 11x + 10 = 0 é; S = {2, 5/3}

  • Resolvendo  simplificando.

\boxed{\begin{array}{lr} 2x.(x-4)+10=-x^2+3x\\2x^2 - 8x +10= -x^2 + 3x\\2x^2+x^2-3x-8x+10=0\\\boxed{3x^2-11x+10=0} \end{array}}

  • Coeficientes.

\boxed{\begin{array}{lr} 3x^2-11x+10=0 \rightarrow\begin{cases} a=3\\b=-11\\c=10 \end{cases} \end{array}}

  • Resolvendo.

\boxed{\begin{array}{lr} x=\dfrac{11\pm\sqrt{\Delta}}{2.3} \end{array}}\to \boxed{\begin{array}{lr} \Delta=(-11)^2-4.3.10 \end{array}}

  • Resolvendo o Delta.

\boxed{\begin{array}{lr} \Delta=b^2-4.a.c\\\Delta=(-11)^2-4.3.10\\\Delta=121-120\\\Delta=1 \end{array}}

  • Valor do discriminante é um.

  • Agora basta resolver.

\boxed{\begin{array}{lr} x=\dfrac{11\pm\sqrt{1}}{2.3} \end{array}}\to \boxed{\begin{array}{lr} \boxed{\begin{array}{lr} x=\dfrac{11\pm1}{6}    \end{array}}\end{array}}

  • Retirando o mais ou menos.

\boxed{\begin{array}{lr} x'=\dfrac{11+1}{6} \end{array}}>\boxed{\begin{array}{lr} x'=\dfrac{12}{6} \end{array}}>\boxed{\begin{array}{lr} \boxed{\begin{array}{lr} x'=2\ \ \checkmark \end{array}} \end{array}}\\\\\\\boxed{\begin{array}{lr} x''=\dfrac{11-1}{6} \end{array}}>\boxed{\begin{array}{lr} x''=\dfrac{10}{6} \end{array}}>\boxed{\begin{array}{lr} \boxed{\begin{array}{lr} x''=\dfrac{5}{3}\ \ \checkmark \end{array}}  \end{array}}

Resposta;

S = {2, 5/3}

Saiba Mais em;

brainly.com.br/tarefa/46270361

brainly.com.br/tarefa/46160498

brainly.com.br/tarefa/46168869

brainly.com.br/tarefa/46181741

brainly.com.br/tarefa/46075404

brainly.com.br/tarefa/46159964

|\underline{\overline{\mathcal{\boldsymbol{\LaTeX}}}}|\\|\underline{\overline{\mathcal{\boldsymbol{\mathbbe\mathcal{{ATT:JOVEM\ \ \ LENDÁRIO\ \ \heartsuit}}}}}}|

Anexos:
Perguntas interessantes