dada equação 2x^2+3x+p=0, determine:
a) o valor de p para que as raízes sejam reais e iguais.
b) as raízes para o valor encontrado de p no item anterior.
c) valor de p para que uma das raízes seja igual a 0.
d) o valor de p para que uma das raízes seja 2.
e) o valor p para que a equação não admita raízes reais.
Soluções para a tarefa
Respondido por
7
a-)Por soma e produto temos:
Soma: 2R=-3/2 =>R=-3/4 (a)
produto: R²=p/2 (b)
Substituindo a em b:
9/16=p/2
p=9/8
b-)Substituindo p em b:
R²=p/2
R²=9/16
R=3/4
c-)Por soma e produto
Produto: R.0=p/2=>p=0
d-)Por soma e produto:
Soma: 2+R=-3/2 (c)
Produto: 2R=p/2=>p/4=R (d)
Substituindo d em c:
2+p/4=-3/2
p=-28/2=-14
e-) Para não admitir raizes reais o discriminante deve ser negativo, logo:
9-4.2.p<0
9-8p<0
9<8p
9/8
9/8
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
9/8