Matemática, perguntado por 073841, 1 ano atrás

Dada a matriz A =  \left[\begin{array}{ccc}1&5\\2&4\\\end{array}\right] , calcule os autovalores da matriz A, logo em seguida marque a alternativa correta:

a) λ _{1} =5 e λ _{2} = 2


b) λ _{1} = - 1 e λ _{2} = 7


c) λ _{1} = - 4 e λ _{2} = - 1


d) λ _{1} = - 1 e λ _{2} = 6


e) λ _{1} = - 3 e λ _{2} = 7

Soluções para a tarefa

Respondido por albertrieben
3
Boa tarde 

sejam A = (1 5) e I = (1  0)
                 (2 4)         (0  1)
temos 

det (A - λI) = 0

l 1 -  λ   5 l
l    2    4 - λ l

det = (1 -  λ)*(4 -  λ) - 2*5 = 0

4 - 5λ +  λ² - 10 = 0

λ² - 5λ - 6 = 0

(λ - 6)*(λ + 1) = 0

λ1 = -1, λ2 = 6 (D)




Respondido por mariageraldacresende
1

Resposta:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} \leq \geq \neq \pi \alpha \beta \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]

Explicação passo-a-passo:

Perguntas interessantes