Dada a função quadrática f(x) = x2 - 4x + 3 determine :
a) f(0)=
b) f(-1)=
c) f(2)=
d) os zeros da função .
Me ajudem nao estou conseguindo fazer !
Soluções para a tarefa
a)f(0) = 0²- 4.0+ 3
0 - 0 +3
f(0)= 3
b)f(-1) = (-1)² - 4 . (-1) +3
1 -(-4) +3
1 + 4 + 3
f(-1)= 8
c)f(2)= 2² - 4.2+3
4 - 8 +3
f(2)= -1
d) é o y ou f(x) quando ele é zero
x²-4x+3=0
a=1 ,b=-4,c=3 e formula do delta é b²-4ac
delta= (-4)²-4.(1).(3)
16-12
delta igual a 4 e a raiz quadrada é 2
calculando a formula de bhaskara vai achar x1=3 e x2=1(esses são os zeros da função)
:D
Basta substituir x pelos valores dados, veja:
A)
f(x) = x² - 4x + 3
f(0)= 0²-4*0+3
f(0)= 0-0+3
f(0)= 3
Resposta → S= {(0, 3)}
B)
f(x) = x² - 4x + 3
f(-1)= (-1)²-4(-1)+3
f(-1)= 1+4+3
f(-1)= 5+3
f(-1)= 8
Resposta → S= {(-1, 8)}
C)
f(x) = x² - 4x + 3
f(2)= 2²-4*2+3
f(2)= 4-8+3
f(2)= -4+3
f(2)= -1
Resposta → S= {(2, -1)}
D)
Determinar os zeros da função indica onde o gráfico intercepta o eixo x ou eixo das abscissas.
Igualaremos a função a 0.
f(x)= 0
x²-4x+3= 0
a= 1 b= -4 c= 3
Δ= b²-4.a.c
Δ= (-4)²-4.1.3
Δ= 16-12
Δ= 4
x= (-b+-√Δ)/2.a
x= (-(-4)+-√4)/2.1
x= 4+-2/2
x¹= 4-2/2 ⇒ x¹= 2/2 ⇒ x¹= 1
x²= 4+2/2 ⇒ x²= 6/2 ⇒ x²= 3
Resposta → S= {1, 3}