Dada a função f(x) = x.senx, calcule f'''(Pi/2).
Derivada.
Soluções para a tarefa
Respondido por
3
Pela regra da multiplicação, você deriva a função f(x)=x.senx, dado que
Então:
f'(x) = sen(x) + cos(x)*x
Pela mesma regra, a segunda derivada é:
f''(x) = cos(x)+(cos(x)-sen(x)*x) = 2cos(x)-sen(x)*x
E, por fim, a terceira derivada:
f'''(x) = -2sen(x)-(sen(x)+cos(x)*x) = -3sen(x)-x*cos(x)
Aplicando no ponto f'''(pi/2), temos
f'''(pi/2) = -3(sen(pi/2))-(pi/2)*cos(pi/2)
Sabendo que o cosseno de pi/2 é zero, pois não há valor de cosseno para 90 graus, ficamos com
f'''(pi/2)=-3 sen(pi/2)
O seno de 90 graus é 1, então
f'''(pi/2)=-3*1 = -3
Perguntas interessantes
Matemática,
9 meses atrás
Biologia,
9 meses atrás
Matemática,
9 meses atrás
História,
1 ano atrás
Inglês,
1 ano atrás
Matemática,
1 ano atrás